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Chapter 1 

Introduction

Have you ever found yourself counting something random, like steps in a staircase or 

beeps of a timer before someone turns it off? It might seem rather random to count 

the points with integer coordinates, sometimes called la ttice  po in ts, in a figure, 

but it turns out that many counting problems reduce to counting integer points in, 

that is, finding the d isc re te  volum e of, a convex polytope, defined in Section 2.1.

This study of counting integer points in dilations of polytopes is called Ehrhart 

Theory; Eugene Ehrhart showed in [3] (1962) that this counting function is a polyno

mial with some quite nice properties if your shape is a convex polytope with integral 

vertices and a quasipolynomial (defined in Section 2.3) with similar nice properties 

if your shape is a convex polytope with rational vertices; these theorems appear in 

Section 2.4. We call these the Ehrhart polynomial and Ehrhart quasipolynomial, 

respectively.

Though we know some things about Ehrhart polynomials and, to a lesser extent,
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Ehrhaxt quasipolynomials, there is still a lot to discover; we decided to focus on a 

paxticulax type of convex polytope: the zonotope, defined fully in Section 2.5. A 

zonotope is a projection of a cube, and it has some more nice properties which 

we will explore in Section 2.5. One of the properties that makes it particulaxly 

convenient for Ehrhaxt Theory is that we can decompose a zonotope into half-open 

parallelepipeds; Figure 1 shows such a decomposition for a 2-dimensional type B 

permutahedron, a zonotope explored in Section 3.1. This decomposition tiles the

Figure 1.1: A decomposition of an octagon into half-open parallelepipeds.

zonotope, which means that if we want to determine the integer point count of the 

whole shape, we need only count the integer points in each of the parallelepipeds 

and add them all up. Richaxd Stanley in [7] (1997) has a theorem that shows how 

we can compute the Ehrhart polynomial of an integral zonotope, that is, a zonotope 

with integral vertices.

How much haxder can it be to determine the Ehrhart quasipolynomial of a ratio

nal zonotope? The answer, unfortunately, is significantly more difficult. We look at 

a few examples of rational cubes in Section 2.6 and compute their Ehrhaxt quasipoly
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nomials before returning to another type of integral zonotope. In Section 2.7, we 

meet permutahedra of types A, B , C, and D, whose Ehrhart polynomials axe com

puted in [1]. We take a brief detour in Section 2.8 to introduce signed graphs, an 

important tool for our study of permutahedra.

In Chapter 3, wc translate each type of permutahedra (A , B, C, and D) so 

that their center is at the origin; this translation ties the permutahedra to their 

other definition, which comes from taking permutations of some numbers. The Cd~ 

permutahedron, for instance, is the convex hull of signed permutations of (1 ,2 , . . . ,  d). 

We examine the translated permutahedra, and if the translated versions do not 

have integral vertices, we compute their Ehrhart quasipolynomial. In Section 3.1, 

we learn that the type B  permutahedra has half integral vertices when translated. 

Using signed graphs, we learn about the parallelepipeds that make up its zonotopal 

decompositions and compute its Ehrhart quasipolynomial in Theorem 3.6.

T h eo rem  3.6. Let

r d := {signed graphs on i ] with only CC, HC, and TC}

and

Yd := {signed graphs on [d] with only CC, HC, and even TC}.

Z(Bd), the Bi-permutahedron centered at the origin, is a half-integral zonotope, and
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(t) = {

J2 (2cc(g)) td~tc Ĝ) i f  t even,
G e r d

£  (2“ (G)) *d-ic(G) i f  t odd.
Gerv

In Section 3.2, we discover that some of the type A  permutahedra have integral 

vertices when translated but that others do not, and we apply the same tools that 

we developed for type B  to compute the Ehrhart quasipolynomial for type A  in 

Theorem 3.10.

T h eo rem  3.10. Let

Fd := {forests on [rf]},

Fd := {forests on [rf] with only even TC\.

The permutahedron Z (A d-i) is a half-integral zonotope, and

JZ ( A d. , ) «  =

td i f t  even,
G eF d

Yj?r-u*fS) i f t  odd 
GeFd

In Sections 3.3 and 3.4, we see that types C  and D  retain integral vertices when 

translated.
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Chapter 2 

Background

2.1 Starting Definitions

For our journey into the realm of counting, we shall consider a class of figures called 

convex polytopes. A convex p o ly to p e  V  is the convex hull of a finite set of points 

vi) • • •, vn in Rd [2, p. 27]:

V  — {AiVi +  ■ • ■ +  Anvn : Ai H b A„ =  1, all Aj  >  0}.

We will first consider the case in which all of the vertices of the polytope, a collection 

of the Vj-s, have integer coordinates; we will then consider what happens when these 

points are allowed to be rational. The next question, then, is, what happens when 

we change the size of our favorite polytope V? In particular, what if we dilate V  

by some positive integer t? This is the la ttic e -p o in t en u m era to r of tV  [2, p. 29],
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which can be written as

Lv (t) : = # ( tV  n Z d) .

We shall explore this counting function more thoroughly later; for now, let us also 

add the character of the generating function of L-p(t), called its E h rh a rt series [2, 

p. 30]:

Ehr-p(z) := 1 +  L-ptyz1.
t> i

2.2 A Square and a Cube: First Examples

X\

Figure 2.1: Some dilates of

Consider the unit square, Eh =  [0, l]2; its discrete volume is 4. One can see 

that each of the vertices is an integer point but that there are no other integer 

points in this square. What happens, then, if we dilate our square? Pictured in 

Figure 2.1 are the original square as well as its 3rd and 5th dilates. One can see
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that £d2(£) =  (t +  l ) 2.

Rather conveniently, we can now consider =  [0, l]d and observe that L\jd(t) 

(t +  l ) d. The Ehrhart series, then, is

Ehr(z) =  1 + ' ^ j L Ud{t)zt
t> i

=  i + E ( * + 1^ -
t> i

We can rewrite the Ehrhart series in a different way; to do so, we need to 

introduce the Eulerian numbers. The E u le rian  num bers  A(d, k) are defined in [2, 

p. 30] by

-d j  1CLo k)zk
h  d - ^ +i '

Using the Eulerian numbers, we now have the following theorem from [2]: 

T h eo rem  2.1. The Ehrhart series of □,* is Ehrnd(z) =  — •
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Proof.

EhrQ(l (z) =  1 +  ^ ( t  + 1 )<V
i>l

=  x ^ + i y v
t>o

- t>i

1 E t i  Md,k)zk
z  (1 -  z)**1

E t i  A (d ,h)zk- '
(1 -  z)d+1

We shall also show tha t an explicit formula [2] for the Eulerian numbers is

□

B - u f ; 1)
j =0 \  J  /

A (d ,k) = y + - i y [  ) ( f c - j ) a 

Proof. Let d G Z>0 we have

■dv j  _  Y l k =o
(1 -  z)d+l '

j >  0

We are interested in the coefficient of z k in the numerator of the right-hand side. 

Multiplying both sides of the equation by (1 — z)d+l gives

d

(i = H A ^ zk-
j >  0 k = 0
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To find the coefficient of z k, we add together each part of the product on the left-hand 

side that results in z k\ however, (1 — z)d+1 is not currently written in a convenient 

form for us to do this, but we can rewrite it:

a - * ) * *  =  ( - 1)0 (d o + (_i)1 (d 1 0 +■■ ■+(_i)d+i ( d + 0 •zd+i

Now, we multiply the coefficient of the zJ in IV by the coefficient of

z*-j in Ej>o?*'■

k
A(d, k)=£ (t-iy (d+')) ((k ~ jy) ,

which is exactly what we set out to prove. □

2.3 Polygons

Consider a convex polygon P  6  R2; what can wc say about these figures? Pick’s 

Theorem, named after Georg Alexander Pick [4], relates the lattice points of a 

polygon to its area.

T h eo rem  2.2 (Pick’s Theorem, [4]). L etV  be a convex polygon with integer vertices; 

A, the area o fV :  I, the number of lattice points in the interior o fV ;  and B . the
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number of lattice points on the boundary o fV . Then

A - i  +  i f l - i .

Rather than prove Pick’s Theorem, we shall verify that it holds for a rectangle 

with integer coordinates. Note that, without loss of generality, we can assume that 

our rectangle 71 is in the first quadrant with one vertex on the origin; if it is not in 

that location initially, we can easily shift its coordinates by integer values, thus not 

changing the discrete volume, until it is in our desired location. The vertices of this 

rectangle, then, are (0,0), (a, 0), (0, b), and (a, b) for some positive integers a and b.

We now compute A, I, and B  of the rectangle 1Z:

A = ab

I  = (a — 1)(6 — 1)

B  =  2(a +  1) +  2(6 +  1) — 4.
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Then,

I + ^ B - 1  = (o — 1)(6 — 1) +  i  (2(a +  1) +  2(6 +  1) — 4)  — 1 

=  ab — a — & + l + a +  l +  &+ l — 2 — 1 

=  ab 

=  A.

Lem m a 2.3. Let B  and V  be defined as in Theorem 2.2. The number of points on 

the boundary o ftV  is tB .

Proof. Consider the boundary of V\ say V  has n edges. The boundary can be 

decomposed into n half-open line segments, one for each edge, as shown in Figure 2.3. 

We can label these half-open edges e i , . . . ,  en, and say that the number of integer 

points on each e*, is b̂ . Then, since there is no overlapping of half-open edges, 

B = Y^k=1 bk- It suffices to show then, that the number of integer points on tek is

tbk.

Figure 2.3: A hexagon with its boundary decomposed into half-open edges. 

Suppose efc has endpoints (a, b) and (c, d) so that efc =  [(a, b), (c, rf)). Then
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tek — [(ta ,tb ),(tc ,td )). The slope of e* is ^  |  for some relatively prime x ,y .

Note that the only integer points on e* will occur at points of the form (a+ jx, b+jy).

If d — b and c — a are relatively prime, then (a, b) will be the only integer point 

on ejt, since in that case (a + x.b  + y) = (c, d).

Suppose, on the other hand, that d — b and c — a are not relatively prime. 

Then we decompose ek into copies of a, b), (a + x, b +  y))- Since each copy of 

[(a, b), (a + x, b + y)) contains exactly one integer point, there must be bk copies 

needed.

We can similarly decompose tek into t  copies of e*, thus giving the number of 

integer points on tek to be tbk.

Thus the number of points on the boundary of tV  is

7i n
^  tbk - t bk =  tB . □
fc-i fc=i

T h eo rem  2.4. Let V  be a convex polygon with integer vertices; A, the area o fV ;  

and B  the number of lattice points on the boundary o fV . Then

Lp(t) = A t2 +  ]-Bt +  1.

Proof. Let I  be the number of lattice points in the interior of V. Rearranging the 

equation n Pick’s Theorem 2.2 gives us that the number of points with integer
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coordinates in a polygon V  is

i  + b  = a - \ b  + i  + b  = a  + \ b  + i .

Since the area of tV  is A t2 and the number of lattice points on the boundary of 

tV  is LB, we now have the lattice-point enumerator of V:

L-p(t) — A t2 -|- - B t  - |-1. □

One particularly exciting item of note from this theorem is that for an integral 

polygon P, Lp(t) is a polynomial of degree 2. The lattice-point enumerator of 

a polygon is not always a polynomial. W hat happens, for instance, if instead of 

having only integer coordinates, the vertices of V  have rational coordinates, such as 

the rectangle in Figure 2.4? No longer is Lp(t) a polynomial; it is a quasipolynomial. 

A quasipo lynom ial Q is a function of the form

Q(t) =

Po(t) if t = 0 mod k ,

Pi(t) if t = 1 mod k,

Pk-i{t) if t = k — 1 mod k ,

for some polynomials Po.Pi,. . .  ,Pk-\ and some positive integer k. The minimal
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choice of k is the period  of Q [2, p. 47].

__m _

Figure 2.4: The first, second, third, and sixth dilates of a rational rectangle.

Theorem  2.5 ([3]). Let V  be a convex polygon with rational coordinates. Then 

L-p(t) is a quasipolynomial of degree 2 whose leading coefficient is the area o fV .

2.4 Cones and Ehrhart Theory

A useful tool in studying convex polytopes is coning over a polytope. Choose a 

convex d-polytope V  and place this polytope in Rd+1 by setting the (d +  1 )st coor

dinate of each vertex to 1: given vertices vj, v2, . . . ,  vn of V. our new vertices are 

(vj, 1), (v2, 1 ) ,. .. ,  (vn, 1) [2, p. 63]. The cone over V , then, is

cone('P) =  {Aj(vi, 1) +  A2(v2, 1) H b A„(vn, 1) : all Aj > 0}.

Taking all the points in this cone that have a (d+ l)st coordinate of 1 returns a copy 

of our original polytope, and taking all the points in this cone that have a (d + l)st



15

coordinate of t returns a copy of tV .

We can do more with these cones than cone over polytopes, though we will return 

to this; we can also list all the integer points contained in a cone. For a set S, let

a s(z) := zm’
mesnzd

the in teg e r-p o in t tran sfo rm  of S.

ll t,l

Figure 2.5: The cone with generators (1,2) and (—1,2).

E xam ple  2.1. Consider the 2-dimensional cone K. =  {Ai(l, 2) +  A2(—1,2) : Al5 A2 >  

0}, pictured in Figure 2.5. We say that the fu n d am en ta l p ara lle lep ip ed  of JC is 

the half-open parallelepiped

n  :=  {Ai(l, 2) +  A2(—1,2) : 0 <  Ax, A2 < 1},

determined by the first lattice point on each generating ray of JC, which we can use
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to tile K, and recover each integer point in exactly one copy of II. Thus there are 

two things we need to do: first, list all the integer points in a single tile, and second, 

list all the tiles of 1C. To do the second, we can use a geometric series:

EE z-
1

i>o*>o

Next, we determine where the integer points in II are; in our case, there are 

4 integer points in II: (0,0), (0,1), (0,2), and (0,3). These can be encoded by 

the polynomial 1 +  z2 +  +  z2 - Note that setting (zi, z2) — (1,1) in the previous

statement y Ids the number of integer points in II. Putting these two parts together 

through multiplication gives

/ \ _  1 +  z2 +  +  z2 
aK(Z) ~  (1 -  z iz2)(l -  z i'z* )-

This construct of 0jc(z) is general; that is, the numerator of cr/c(z) is the poly

nomial that encodes the integer points of the fundamental parallelepiped, and the 

denominator of ctjc(z) is the denominator of the geometric series that lists all copies 

of the fundamental parallelepiped of K, and is constructed from the generators of JC.

We are now ready for Ehrhart’s Theorem.

T h eo rem  2.6 (Ehrhart’s Theorem, [3]). Let V  be an integral convex d-polytope, 

then L-p(t) is a polynomial in t of degree d.

We have already seen this result for d — 2 when we looked at the polygons; now,



17

we have a result that holds for a general dimension d. In honor of Ehrhart’s work, 

we call Isp{t) the Ehrhart polynomial of V  [2, p. 68]. As with d =  2, Ehrhart has a 

theorem for rational polytopes.

T h eo rem  2.7 (Ehrhart’s Theorem for rational polytopes, [3]). Let V  be a rational 

convex d-polytope; then L-p{t) is a quasipolynomial in t of degree d. The period of 

Isp(t) divides the least common multiple o f the denominators of the coordinates of 

the vertices o fV .

Returning to the idea of coning over a polytope V, recall that the tth  dilate of 

P  can be recovered by taking all the points in cone('P) whose (d +  l)s t coordinate 

is t. For this reason, looking at z^+1 in <Tcone(p) will provide a list of integer points 

whose (d I- l)s t coordinate is t. Thus

&cone(V)(z l, Z2, ■ • • , 2d+l) =  1 +  &-p(Zi, . . . , Za)Zd+l +  CT2p(z1} . . . , Zd)z%+1

+  <T3V{Z1, ■ ■ ■, Zd)zl+l +  • • •

=  1 +  <Ttv{zi, • • ■ , Zd)Zd+ V
t> 1

This looks very similar to the Ehrhart series, except that the integer-point trans

form of V  contains d variables; however, we noted earlier that setting each variable 

equal to 1 gave the number of lattice points for a particular figure. This holds 

in general, since each lattice point has exactly one term in the sum that is the
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integer-point enumerator. Thus, as can be seen in [2, p. 701,

<7cone(P )(l, 1 , • • • , 1 , ^ d + l )  = 1+ Y1  ‘ ’ l )̂ d+l =  1 +  M 0 4 + 1 ‘
f>l t>l

There are many fascinating and useful results that stem from Ehrhart’s theorems, 

a number of which are detailed in [2]. One such result is Stanley’s Nonnegativity 

Theorem.

T h eo rem  2.8 (Stanley’s Nonnegativity Theorem, [6]). Suppose V  is an integral 

convex d-polytope with Ehrhart series

Fhr h*dz<i + h*d-\zd~l H-------
Ehr* (2) = -----------{ T ^ )5 T I----------- •

Then /iq, /i*, . . . ,  h*d are nonnegative integers.

Another result connects the discrete volume of a polytope to its continuous 

volume [2, p. 77].

T h eo rem  2.9 ([3]). Suppose P e l d is an integral convex d-dimensional polytope 

with Ehrhart polynomial

Then Cd =  vol V.
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2.5 Zonotopes

We are now one definition away from meeting the main character of our story: the 

zonotope. The definition we need is that of a Minkowski sum. Let P i, P 2, ■ ■ ■, Vn C 

TRd be polytopes; their M inkow ski sum  is [2, p. 167]

*P\ +  Vi +  • • • +  "Pn '.= {xi +  X2 +  • • • +  X-n • Xj €E Pj}.

A zonotope is the Minkowski sum of line segments; more formally, given n  line 

segments, each with one endpoint at the origin and the other at u i, u 2, . . .  , u„ G 

the zono tope

Z ( Ui, u 2, . . . ,  u„) :=  {xi +  x 2 H b x„ : Xj =  AjUj with Aj G [0,1]} +  b

=  {AiUi +  A2U2 +  • • • +  Anu„ : 0 <  Aj <  1} +  b 

=  A[0, l]" +  b,

where A is the matrix whose columns are m , u 2, . . . ,  u„ and b € Rd.

Figures 2.6 and 2.7 show specific examples of zonotopes, but the previous exam

ples in this paper were also rather conveniently chosen to be examples of zonotopes. 

The parallelepipeds we came across when looking at the cones are a type of zonotope 

that will come up again as a particularly useful structure.

Every face of a zonotope occurs when some number of A i,. . . ,  An are fixed at 0
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Figure 2.6: A rhombic dodecahedron is a zonotope in R3 with 4 generators.

or 1. One can show that the face created when some AjS are fixed at 0 and other AjS 

are fixed at 1 and the face created when those same XjS and AjS are fixed at 1 and 

0, respectively, have the same structure. Thus, if we want to study the structure of 

some face, it suffices to set all the fixed XjS to 0. What happens? Let us suppose, 

for simplicity, that Ai = • • • =  A* =  0 and A^+i,. . . ,  An are allowed to vary. That 

gives us

{Oui +  • • • +  Du* +  Afc+iU*;+i +  • • ■ +  A„u„ : 0 < Uj <  1}

={Afc+iUfc+i +  ■ • ■ +  AnUn : 0 <  Uj <  1}

=A '[0,l]n,

where A ' is the matrix whose columns are u^+i,. . . ,  u„; that is: 

P roposition  2.10. Every face of a zonotope is itself a zonotope.
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Figure 2.7: A hexagon is a zonotope in M2 with 3 generators.

One rather useful thing to do with a zonotope is to translate it so that its center 

of mass is at the origin. To achieve this, we consider

2A[0, l]n — (ui +  u2 +  • • • +  un) =  {2AiUi +  • • • +  2Anun — (uj +  • • • +  Un) : 0 < Xj < 1}

=  { ( 2 A i — l ) u j  +  • • • +  ( 2 A„ — 1 ) 1^  : 0  <  Aj <  1 }

=  {/X1U 1 +  • • • +  Unu n : - 1  <  Hj <  1}

=  A[—1, l]n.

We denote this dilated and translated zonotope Z(±Ui, ± 112, • • •, ± u n). One 

way in which this translated zonotope is useful is that it allows one to see a certain 

type of symmetry: sym m etry  ab o u t th e  origin. That is, if x  is in our zonotope, 

then —x is also in our zonotope. The argument follows fairly quickly from this 

translation: suppose we have some x € Z (± u i, ± u 2, . . . ,  ±u„). Then

x =  AiUi H 1- Anun
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for some A i , . . . , A „  G [—1,1]. Since Aj  G [—1,1], it follows that — Aj  G [—1,1], and

- x  =  -(AjUi H h A„u„) =  -A jU i Anu„

is also in our zonotope. In general, a zonotope *s cen tra lly  sym m etric , which 

means that some translate of the zonotope is symmetric about the origin.

Now that we have been introduced to the zonotope and know a little about it, we 

are ready to, quite literally, start picking it apart: every zonotope can be decomposed 

into half-open parallelepipeds. A formal definition and statement of this result are 

next, and after those, we will examine a particular zonotope to convince ourselves 

of the tru th  of the previous statement.

This definition reauires linearly independent vectors w t , . . . ,  wm G Rd and <Ti, . . . ,  am G 

{±1} [2], Then

0 < Xj <  1 if crj =  —1
Aiwi H h Amwm :

0 <  Aj < 1 if aj = 1

Since a parallelepiped is the Minkowski sum of linearly independent vectors, we 

can see, with some examination, that is a half-open parallelepiped whose

generators are w l r . . ,w m. W ith this definition, we can formalize the zonotopal 

decomposition into half-open parallelepipeds earlier claimed [2, p. 171

T h eo rem  2.11 ([5]). The zonotope Z ( u i, tfc,. . . ,  Un) can be written as a disjoint
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union of translates o f U w h e r e  {-u;i,. . . ,  wm} ranges over all linearly inde

pendent subsets of { iti,. . . ,  Un}, each equipped with an appropriate choice of signs

Consider, for example, the hexagon pictured in Figure 2.7. We can label the 

generators to give them an ordering and make them easier to reference: let the 

horizontal vector be Ui, the middle vector be u2 and the vector pointing to the left 

be 113. We shall proceed with our decomposition of Z fu i,  U2, 113) starting with Ui.

By itself, ui is just a line segment. Thus its decomposition into parallelepipeds 

consists of a point and a half-open line segment, pictured in Figure 2 .8. Specifically, 

the decomposition we will use is 0 U (0, ui].

•  o ---------------------

Figure 2.8: A decomposition of into half-open parallelepipeds.

In adding u?, we get a new dimension. We can no longer be content with 

just half-open line segments and points. We retain the decomposition we used for 

Ui and apply the same concept to U2 without doubling the origin. However, we 

also need to consider the part of the zonotope that comes from Ai and A2 both 

being nonzero. We thus get the parallelepiped generated by Ui and u2 but leave 

the sections that we have already covered open. That is, this parallelepiped is 

=  {A1U1 +  A2u 2 : 0 < Ai, A2 < 1}. Figure 2.9 displays the decomposition 

given by Ui with u2.
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Figure 2.9: A decomposition of -Z(ui, U2) into half-open parallelepipeds.

The addition of u 3 does not add another dimension, like that of U2 did, so we 

now have to be careful to only choose linearly independent subsets of Ui,U2,U3. 

In particular, we cannot select all three vectors at once. We also do not need to 

consider ui with 112, since that step was previously completed. Our new half-open 

parallelepipeds, then, are (0 , u3], 1 1 ^ ^ + u 2 =  {A1U1 +A3U3+U2 : 0 < A1( A3 < 1 } (a 

translate of the zonotope with generators ui and u 3), and IlJ1’21U3 =  {A2U2 +  A3u3 : 

0 < A2, A3 < 1}. F jure 2.10 displays the completed zonotopal decomposition of 

Figure 2.7.

Figure 2.10: A decomposition of ^ ( u i ,u 2,u 3) into half-open parallelepipeds.

Figure 2.11 shows a zonotopal decomposition of a polygon we will introduce in 

Section 2 7 and explore more in Section 3.1
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Figure 2.11: A zonotopal decomposition of Z (B 2).

One of the beautiful things about this decomposition is that it partitions oui 

zonotope, so every integer point that is in our zonotope is in exactly one of the 

half-open parallelepipeds. Thus, in order to determine the Ehrhart polynomial and 

Ehrhart series of a zonotope, we might be able to make some substantial progress 

by looking at the Ehrhart polynomial of a half-open parallelepiped. We shall first 

consider a d-dimensional parallelepiped in Zd [2, p. 172].

Lem m a 2.12. Suppose Wi- W?, . . ,  Wd fc Zd are linearly independent, and let 

II := {AjtiJi +  A2HJ2 +  • • • +  ArftiJd : 0 <  Xj < 1}.

Then

# ( n n z d) =  v o in  =  | d e t ^  W2, . . . , w d)\, 

and for every positive integer t,

# ( * n n z d) =  (voi n  )td.
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This lemma uses the fact that integer dilates of a half-open parallelepiped can 

be tiled by copies of the original half-open parallelepiped—the fth dilate requires 

exactly td such copies—and the fact that the leading term of the Ehrhart polynomial 

of a polytope is the volume of the polytope, stated earlier in Theorem 2.9.

The following theorem suggests that examining half-open parallelepipeds is ex

actly what we want to do [2, p. 172].

T h eo rem  2.13. Decompose the zonotope Z  £ Rd into half-open parallelepipeds. 

Then the coefficient c* of the Ehrhart polynomial

L z (t )  =  c&td +  c^-it*1 1 +  ■ ■ ■ +  Co

equals the sum of the relative volumes of the k-dimensional parallelepipeds in the 

decomposition of Z .

If we have a A;-dimensional parallelepiped in Rd with k < d, the volume of this 

parallelepiped is 0; however, Theorem 2.13 suggests that we can get more infor

mation out of something called the relative volume. For instance, if we look back 

at the zonotopal decomposition of the hexagon in Figure 2.10, all the half-open 2- 

dimensional parallelepipeds will survive with a non-zero volume, but the half-open 

line segments and point at the origin will come up as 0.

D efin ition  2.1. Let S  E be of dimension k < d and span S  = {x +  A(y — x) : 

x ,y G 5 ,A e M } . Then the re la tiv e  volum e of S  is the volume computed relative
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to the sublattice (span S ) fl Zd.

Theorem 2.12 looks only at parallelepipeds whose dimension matches the dimen

sion of the space. Thus, we need a generalization of this theorem [2].

L em m a 2.14. Suppose w x ___  wn E Z d are linearly independent, and let

II := {Aiiwi +  \ 2vh H 1- An«7n : 0 <  A_,• < 1}.

and let V  be the greatest common divisor of all n x n minors of the matrix formed 

by the column vectors Wi xv-z, ■. ■ wn. Then the relative volume of II equals V. 

Furthermore,

# ( n  n  Z d) = V,

and for every positive integer t,

# ( f f l n z d) =  v t d.

We thus get the following theorem about the Ehrhart polynomials of zonotopes:

T h eo rem  2.15 ([7]). Let « 2, G Zd and Z  be the zonotope generated by

«i, U2, . . . ,  Un. Then

Lz(t)  = J ~2rn(S)tlsl, 
s
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where S  ranges over all linearly independent subsets o f {«i, «2, • ■ ■, tin}, and m (S) 

is the gcd of all minors o f size |5 | of the matrix whose columns are the elements of 

S.

The next logical step, given the outline of the paper so far, is to ask, “Well, 

what about rational zonotopes?” From Ehrhart’s theorem on rational polytopes, 

Theorem 2.7, we know that the counting function is a quasipolynomial in t of degree 

d whose period divides the least common multiple of the denominators of the coor

dinates of the vertices of the zonotope, but can we say anything else? Can we use 

the decomposition into half-open rational parallelepipeds to give us a nice theorem 

like we had for integral zonotopes? The answer is that we do not yet know. There 

is, as of yet, no such theorem, perhaps due to the complexity of determining the 

Ehrhart quasipolynomial of even just a parallelepiped. We can still look at a couple 

examples of rational zonotopes—in particular, rational cubes—to see what we can 

come up with.

2.6 Examples of Rational Cubes 

2.6.1 Rational Generators

The lovely unit square we examined at the start of the paper will no longer work 

as an interesting example, given that the coordinates of its vertices are all integral; 

consider, instead, Di =  [0, | ] 2. Figure 2.12 shows this square and its 1st through
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13th dilates. The dilates are shaded from light to dark to help us see the pattern: 

the dilates that are congruent to 0 mod 5 are the lightest, and those that are con

gruent to 4 mod 5 are the darkest. This pattern suggests that the period of our 

quasipolynomial is 5.

Notice that every 5th dilate of □  i is a dilate of the unit square; we already know
5

the Ehrhart polynomial for that, so we can modify it slightly so that it works for 

the 0 mod 5 dilates of D i . Instead of the 1st, 2nd, 3rd, etc. dilates, we get the unit5
square dilates at the 5th, 10th, 15th, etc. dilates of D i, so if we divide the dilate 

input by 5. we should have what we are looking for. That is, for t = 0 mod 5,

t = _____

Figure 2.12: Some dilates of [0, |] 2.

One constituent down, four to go.
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Looking at Figure 2.12, we see that it is only the 0 mod 5 dilates that capture new 

integer points; all other dilates keep the same number of points as whichever 0 mod 5 

dilate came directly before. This indicates that we can modify the polynomial we got 

for the 0 mod 5 case slightly to give us our desired polynomials. This time, though, 

we are not working with multiples of 5, so we cannot just divide by 5. Consider the 

dilates for t = i mod 5; subtracting i from t  yields a multiple of 5.

First, let us assume t < 5. There is exactly 1 integer point in this dilate, and we 

can capture the 1 from this point by subtracting i from t, which gives 0; dividing 

by 5; adding 1: and squaring the resulting 1.

W hat about 5 < t < 10? We should get 4 points, and we do so by subtracting i 

from t, which yields 5; dividing by 5; adding 1; and squaring the resulting 2, wb’ch 

gives us the desired 4. This pattern continues to hold for t > 10.

Given the connection to the unit square, we deduce that the Ehrhart quasipoly

nomial for Ch is
5

Lu\ W — '

(K* -  0) +  ! ) ' 

(!(* _  !) +  0

( g ( * - 3) +  1);

( i ( * - 4 )  +  1)'

t  =  0 mod 5, 

t =  1 mod 5, 

t  =  2 mod 5, 

t  =  3 mod 5, 

t = 4 mod 5.
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Given the nature of cubes, wc generalize this quasipolynomial for [0, £]d by 

replacing the 2s with ds and the 5s with ns:

(n(* — °) +  I)"* 

( i ( t  -  1) +  1)“

if t = 0 mod n, 

if t =  1 mod n,

if t = i mod n,

( l ( t  — (n — 1)) +  l ) d if t =  n — 1 mod n.

The Ehrhart series for [0, will have n  different parts as well, but these parts 

can be put together. We will use the t = i mod n  case to compute the Ehrhaxt series.
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T ,  l k y ^ z ‘ = T ,  ( ; ; ( * - * ) + ' ) z '
t= i  mod n  t=  mod n  '

=  H  { - ( nT +  * “ *) +  0  Z™*
r> 0  '

= + l)^nr2i
r> 0

=  2̂ ( r  +  l ) V r
r> 0

= | E rVr
r > l

= £ E L f W ) ( £ ) t l
(1 -  Zn)d+1

Since our choice of i is arbitrary, putting all choices together gives us

EhrK-r(2)_ (i
( ^ f )  ( e L i ^ X * " ) * ^ 1)

(1 -  zn)d+1
Z L i M l k W - '

(1 -  z){ 1 -  Zn)d

An interesting observation is that this Ehrhart series is remarkably similar to that
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of the unit cube:

Ehr[0,i]d(z)
Y li= iA (d,k)zk 1 

(1 — z)d+1

Do all rational cubes have this similar structure? What about cubes of the form 

[0, ] ? As an example, consider [0, | ] 2, pictured in Figure 2.13. As with Figure 2.12, 

the picture of some dilates of [0, | ] 2, the dilates are shaded according to their value 

mod 5.

Figure 2.13: Some dilates of [0, | ] 2.

This square is a little trickier than the previous example, because now new 

points show up in dilates other than the 0 mod 5 dilates. The 0 mod 5 dilates are 

still straightforward enough: for t =  0 mod 5,

1

The question, then, is, “How many points are on the line segment 0, y] ?” The
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answer! for t =  i mod 5, is |( 3 1 — (3i mod 5)) +  1. We subtract 3i mod 5 from 31 to 

achieve the same effect that subtracting i from 5 had in the previous example: to 

bring us down to the last integer point. Dividing by 5 takes away all the noninteger 

points, and adding 1 ensures that the origin is counted. Squaring this result for each 

value of i gives us the Ehrhart quasipolynomial:

Q (31 — (0 x 3 mod 5)) +  l ) 2 if t =  0 mod 5,

( (31 — (1 x 3 mod 5)) +  l ) 2 if t =  1 mod 5,

'[o,§]2(*) =  * (; (31 — (2 x 3 mod 5)) +  l ) 2 if t = 2 mod 5,

Q (3t — (3 x 3 mod 5)) +  l ) 2 if t =  3 mod 5,

Q(31 — (4 x 3 mod 5)) +  l ) 2 if t = 4 mod 5.

Notice that the number of integer points on [0, £] is ^ (k t — (ki mod n)) + 1, so 

raising this expression to  the dth power would give us the number of integer points 

in the tth  dilate of 0, £]d for t = i mod n. Thus we have another general Ehrhart 

quasipolynomial:
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(£(kt — (0 x  k mod n)) +  l ) d 

(£(k t — (1 x  k mod n )) +  l ) d

(u {kt — (i x  k  mod n)) +  l ) d

if t  =  0 mod n, 

if t  =  1 mod n,

if t = i mod n,

(^ (k t — ((n  — 1 ) x  k mod n )) +  l) if t = n — 1 mod n.

As before, we can compute the Ehrhart series for one value of i and then add 

them all together.

t= i  mod n
L[o,i]JW zt =  (^kt ~ ( i x k  mod n )) +  0 z%

; t= i  mod n

=  ^ 2  ^ —(k(nr + i) — (i x  k  mod n)) +  1 ^ z 

=  f  — (knr + ki — (i x k mod n)) +  1 } z
T-̂ -n V ̂  /

,nr+i

Note that fc* (tx^ mod n) js |^ J  a constant. Let a — +  1. Then the previous

expression can be further simplified.
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^  ( - -(knr + ki — (i x  k  mod n)) +  1 J
r> 0  '

E ( , ki — (i x k mod n) \
kr  +  

kr  +

,nr+i

„n r+ i

- £ (r> 0  v

=  (kr +  a )d £

n

ki \ d
— +  I J 2:
n )

dznr+i.

n r+ i

r> 0

(2 .1 )

However, we can no longer use our little reindexing trick from before that gave 

us 5Zr>o r^zT, but if we use the binomial expansion of (kr +  a )d, we might be able 

to get r by itself.

( k r + a y  = f ^ ( i \ k T ) " 'a d-™
m = 0 '  '

- e ( C ) ^ im=0 '  '  /  '
(2.2)

We then substitute (2.2) into (2.1):
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rm znr+iJ2 «*»■+«)̂ "r+‘ = E (E ((IV 0*"")
r> 0  r> 0  \m = 0  '  '  '  '

- e ( C ) ^ e
m = 0 \  ^  '  r> 0

= ^ E ( G * :m“d"mE ’-m(z")r
vn=0 \  '  r> 0

- S j g g f l ) .

Adding the parts of the series corresponding to each i together gives us our Ehrhart

series:

- M r w - g. . „ v v - /  (1 - Z n ) m + l»=0 \  m=0 x v '

While the Eulerian polynomials show up again, this Ehrhart series is much more 

complicated than that of [0, £]d.

2.6.2 A Shifted Cube

Using rational vectors to generate a zonotope is not the only way to get a rational 

zonotope; another method we can apply is translating the zonotope by a rational 

vector. For example, consider our first example: the unit square, m2. Now, consider 

□ 2  — shown in Figure 2.14. The vertices of our shifted cube all have denominator
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2, so we expect, from Ehrhart’s Theorem for rational polytopes (Theorem 2.7), that 

our counting function is a quasipolynomial with period 1 or 2 .

Figure 2.14: Dilates of D2 (left) and of 0 2 — \  (right).

The even dilates are integral and thus have the same Ehrhart polynomial as n 2,

Ln2{t) — {t + l ) 2.

Do the odd dilates follow the same pattern? The first dilate has 1 point, not 4 points, 

so our answer is no, they do not; however, the pattern is similar. The first dilate, as 

mentioned, has 1 point, and the third dilate has 9 points. More generally, when t is 

odd, the ith dilate contains t2 integer points. Thus our Ehrhart quasipolynomial is

La i(t)  — *
(t + l )2 if t even,

t2 if t odd.
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2.7 Coxeter Permutahedra

We now introduce another flavor of zonotope: a permutahedron. We begin by 

defining the classical roo t system s [1 , considering only the positive roots.

A d- i  = {e* -  ej : IX  i < j  < d}

B d  =  {e* —  e j ,  ei  +  e j  : 1 <  i  <  j  <  d }  U { e i  : 1 <  i  <  d }

Cd =  {ei — ej, ei + ej : 1 < i  < j  < d}D  {2e* : 1 < i < d}

£>d = {ei -  ejt ei + ej : l < i  < j  < d}.

A natural thing for us to do is to consider these vectors as generators of a zonotope. 

These are called Coxeter permutahedra. For example, 2(Bd) is the zonotope with 

generators from Bd, and we call Z(Bd) the type-B permutahedron. Figure 2.15 

shows the d = 2 case for each type.

Figure 2.15: Z( A2~i), Z{B2), Z(C2) and Z ( D 2).

The Ehrhart polynomials of each of these lattice permutahedra are computed 

in [1]. Proposition 2.16 indicates why these are called “permutahedra.”

P roposition  2.16. Z(Ad-i )  = conv(permutations of { 0 , 1 , . . .  ,d  — 1}).
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2.8 Signed Graphs

Before continuing on our journey of Ehrhart theory and zonotopes, we need to take 

a quick detour through the land of graph theory. In particular, signed graphs will 

prove to be a useful tool in Chapter 3. Graphs provide a way to keep track of 

connections between objects. See [9] for more information on graphs.

A g ra p h  G is a pair G — (V. E) consisting of a set V of nodes (or vertices) and 

a set E  of 1- or 2-element subsets of V , which we call edges. An edge of the form 

i j , a 2-element subset of V, is a link, and an edge of the form i, a 1-element subset 

of V-, is a h a lf  edge. Our graphs will have neither loops nor multiple edges. The 

degree of a node is the number of edges going into that node. A degree-one node 

is called a leaf.

A su b g rap h  of a graph G = (V̂  E) is a graph G' =  (V7, E') for which V ' C V  

and E' C E  such that E' consists of 1- and 2-element subsets of V '. A p a th  is a 

non-empty graph P  =  (V, E) where

V  =  {ni, ri2,. . . ,  Jit}

and

E  = {Tl\7l2, 7I2TI3, . . . , Tlk—lTlk}, 

where n i , . . . ,  n*. are distinct. A cycle is a non-empty graph C =  (V. E) where
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V  =  { n u n 2, . . . , n k }

and

E  =  {nin2, n2n3, . . . ,  n fe_infe, nfcni}, 

where n i , . . . ,  nfc are distinct. We will sometimes refer to “a cycle on [fc],” by which

we mean a cycle with k nodes labeled 1 , 2 ,k , such as in Figure 2.16, with k =  8. 

A graph is connected if there exists a path between any two of its nodes. A 

connected com ponent of a graph is a maximal connected subgraph. A tree  is a 

connected graph with no cycles and no half edges. A graph is a forest if each of its 

connected components is a tree.

We need something more general than graphs, and this leads us to consider 

signed graphs. A signed g raph  S  is a pair S  =  (G, a) consisting of a graph G and 

a sign function a : E  —> {—1, +1} that labels each link with a — sign or a +  sign. 

Thus S  has three types of edges: positive edges, negative edges, and half edges.
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A cycle is balanced if the product of the signs on its edges is positive and 

unbalanced if the product of the signs on its edges is negative (that is, if the cycle 

is not balanced). Figure 2.18 gives examples of graphs containing both balanced 

and unbalanced cycles.

Figure 2.18: Graphs with balanced cycles (left) and unbalanced cycles (right). 

We define one more term that we will use later: a tree convex hull.

Figure 2.19: The tree convex hull of the even-degree nodes.
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D efin ition  2.2. The tre e  convex hull of nodes n\, n ^ ,. . . ,  n* is the union of all 

paths joining these nodes.

Figure 2.8 gives an example of a tree convex hull.
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Chapter 3 

Rational Coxeter Permutahedra

As mentioned in Section 2.5, it is sometimes useful to translate a zonotope so that 

its center of mass is at the origin. The vertices of a translated lattice zonotope 

may stay on the lattice, or they may be shifted off. For instance, we can see in 

Figure 3.1 that the 2-dimensional type-C permutahedron stays on the lattice whereas 

the 2-dimensional type-B permutahedron is shifted off. Let Z  denote the translated 

zonotope with center of mass at the origin.

Figure 3.1: Upon translation, the vertices of Z^C-i) (left) stay on the lattice, but 
the vertices of Z(B2) (right) are shifted off.
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3.1 Type B

We begin our adventure into rational permutahedra with Z(Bd).  As seen in Fig

ure 3.1, Z( B2) is half-integral; specifically, its vertices are all rational with denom

inator 2. Thus (Figure 3.2) the second and fourth (and, more generally, the even) 

dilates of Z ( B 2) are integral.

Ehrhart’s Theorem 2.6 tells us that the Ehrhart polynomial of Z ( B 2) is quadratic. 

Furthermore, Theorem 2.9 tells us that the leading coefficient is vo\(Z(B2)) =  7, 

and the constant term is 1. Using the fact that the discrete volume of the first dilate 

is 12, we can determine the Ehrhart polynomial:

Lz(B2)(t) = +  4t +  1. (3-1)

Ehrhart’s Theorem 2.7 for rational polytopes tells us that the Ehrhart quasipoly

nomial for Z ( B 2) has degree 2 as well. The period of this quasipolynomial is 2, which 

we can see from the even dilates being integral. Thus we need only focus on the odd



46

dilates. The leading coefficient is st’'l 7, the first dilate has 9 points, and the third 

dilate has 69 points. Putting this all together, we can determine the quadratic for 

the odd dilates and thus the Ehrhart quasipolynomial for Z (B 2):

Lz(b2) W

7t2 + At + 1 if t  even,
(3.2)

7t2 + 21 if t  odd.

We could repeat this process for Z (B 3) and higher, but this process is not really 

feasible for general d. Our goal is to compute the Ehrhart quasipolynon al of Z (B <*) 

for any d.

Since a zonotope can be tiled by half-open parallelepipeds (2.11), it seems a 

logical next step to look at linearly independent subsets of the generating vectors. 

For B 2, this is straight-forward: any combination of two or fewer vectors in B 2, that 

is, (q), (°), ( j ) , and (_^), s linearly independent.

For B d with d > 2, it is not the case that any combination of d vectors is linearly 

independent; for instance, A 2 is a subset of B 3 that has 3 vectors and spans a 2- 

dimensional space. To help us determine which sets are linearly independent, we 

turn to signed graphs, using the following construction from [8].

D efin ition  3.1. Let S  be a subset of B d. We construct the corresponding signed 

graph G s  on [d] by including:

the positive edge i j  for each vector e» — ej G S:
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• the negative edge i j  for each vector e* +  ej € 5;

• the half edge i for each vector e* £ S.

Lem m a 3.1 ([8]). The subsets of Bd are in bijection with signed graphs on [d\. 

Proof. This follows from Definition 3.1 □

Figure 3.3 shows

ffl-O

Figure 3.3: Sets of 2 
signed graphs.

3.1.1 Linear Independence

One observation we can make is that, since Bd lives in Md, any set of more than d 

vectors cannot be linearly independent. The number of vectors in S  C Bd is precisely 

the number of edges of the graph Gs', in order for S  to be linearly independent, then, 

Gs can have at most d edges.

Similarly, a graph with n nodes and more than n edges corresponds to a set of 

linearly dependent vectors. We define the following types of connected components:

and their correspondinglinearly independent vectors

all six subsets of two vectors of B2.

G ).(i) ®.L\) 0 .G )  ©.(-Y> © -(A )
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Definition 3.2. Let Gs be a signed graph.

• A cycle com ponent (CC) of Gs is a connected component of Gs that con

tains a single cycle, which is unbalanced, and no half edges; cc(G )  is the 

number of cycle components of G.

•  A half edge com ponent (HC) of Gs is a connected component of Gs that 

contains a s -lgle half edge and no cycles; h c(G )  is the number of half edge 

components of G.

• A tree com ponent (TC) of Gs is a connected component of Gs that is a 

tree; tc (G )  is the number of tree components of G.

Theorem  3.2 ([9]). Subsets of Bd are linearly independent i f  and only if  their 

corresponding graph contains only CC, HC, and TC; equivalently, every component 

of the graph has at least as many nodes as edges, and all cycles are unbalanced.

Proof. Let S  C  B d and Gs be its corresponding signed graph. We have already seen 

that the connected components of Gs must have at least as many nodes as edges 

in order for S  to be linearly independent. Possible types of connected components, 

then, are tree components, half edge components, and components containing a 

single cycle (more than one cycle would give us more edges than nodes, as would a 

cycle with a half edge or a connected component with multiple half edges).

Claim 1: A tree component corresponds to a linearly independent set of vectors.

We shall proceed by induction.
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Consider a tree on 2 nodes. Regardless of the sign on the edge, this tree has 

one edge and thus corresponds to a single vector with 2 nonzero entries, which is 

linearly independent.

Suppose, now, that every tree on n  nodes corresponds to a linearly independent 

set of vectors and consider a tree on n  +  1 nodes. There exists a leaf; say that this 

is the (n +  l)s t node. Thus there is only one vector that has a nonzero entry ,Ti 

the (n +  l)st component. Consider the tree formed by removing this node and the 

edge connected to it. We are left with a tree on n  nodes, which corresponds to a 

linearly independent set of vectors, all of which have an entry of 0 in the (n -+ l)st 

component. If we add the removed vector back to this set, our new set of vectors will 

still be linearly independent. Thus a tree o n n  +  1 nodes corresponds to a linearly 

independent set of vectors.

Thus a tree component corresponds to a set of linearly independent vectors.

C laim  2: A half edge component corresponds to a linearly independent set of 

vectors.

As with TC, we shall proceed by induction.

Consider the graph that is a single half edge. This half edge corresponds to a 

single vector with 1  nonzero entry, which is linearly independent.

Suppose, now, that every half edge component on n  nodes corresponds to a 

linearly independent set of vectors and consider an HC o n n  +  1  nodes. As with the 

TC, there exists a leaf. Applying the same steps as with the TC shows that an HC
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on n + 1  nodes corresponds to a linearly independent set of vectors.

Thus a half edge component corresponds to a linearly independent set of vectors.

C laim  3: A connected component containing a balanced cycle corresponds to a 

linearly dependent set of vectors.

Consider a balanced cycle on [n]. We can assume, without loss of generality, 

that our edges are j ( j  +  1) with node n  +- 1 being the same as node 1. Let er,- be 

the sign on edge j ( j  +  1); then Oj is either 1 or —1 . See Figure 3.4 for an example 

of such a cycle.

Since our cycle is balanced, Ilj= i ° j =  +1

Our vectors are linearly dependent if we can find some nonzero linear combination 

of our vectors tha t is equal to zero; that is,

Ai(ei — erie2) +  A2(e2 — 02^3) +  ■ • ■ +  An(en — ernei) — 0

with some Aj  ^  0.

Rearranging the left hand side to put the unit vectors togetner yields

A i(e i  — (T\ev) +  A2 (e 2 — 0263) +  • • • +  An (e n — crne i)

=  (Ai — anAn)ei +  (A2 — 0 iAi)e2 +  • ■ • +  (An — ern_iAn_i)en
n

with An+i =  Ai and en+i =  e\.
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In order for this sum to equal 0, we need AJ+i — (JjXj = 0, that is, AJ+i =  GjXj. 

We may assume Ai =  1. Then

A2 

=> A3

=> A j

In particular, An =  ern_i • ■ • <7i. Thus

Ai &nXn — 1 &n{?n—1 ‘ ' ' <̂ l)

=  0.

Thus our set of vectors is linearly dependent.

3

4

-  ax

— OlO\

=  (Tj—i • • • <J\.

Figure 3.4: A signed cycle on [n] with sign (jj on edge j ( j  +  1).
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C laim  4: A cycle component corresponds to a linearly independent set of vec

tors.

Consider an unbalanced cycle on [n]. We use the same setup as in the previous 

claim, using Figure 3.4 for reference. Since our cycle is unbalanced, n^=i ai = —1- 

We need to show that, for any linear dependence,

j = i

we have Aj = 0 for all j ,  with A„+i =  Ai. As before, in order for this sum to equal 

0, we need AJ+i =  OjAy.

We now claim Ai =  0.

0 — Ai(ei — aie-i) +  A2(e2 — 0263) H +  An(en — ane 1 )
n

A2 — o'iAi

=£>• A3 — (T2 O’ 1A1

—7* Aj — (jj—1 . . .
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In particular, A„ =  on- \  ...< j\\\. Thus

0 =  Ai ^nAn 

=  Ai — <7n (<7n_ 1 . . . CTi Ai )

=  Ai — an . . .  a  1A1 

=  Ai +  Ai.

Thus

A !  =  0  

=> A2 =  0

=> A„ =  0.

Thus our set of vectors is linearly independent. □

D efin ition  3.3. We call the signed graph Gs in d ep en d en t if S  is linearly inde

pendent.

3.1.2 Volume

L em m a 3.3 ([1]). Let S  be a linearly independent subset o f Bd and Gs be its 

corresponding graph. The relative volume o f Z (S ) is 2CĈ°S\
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Proof. In order to determine the relative volume of 2 (5 ) , we can look at the parts 

of S  that correspond to connected components of Gs, find the relative volumes of 

those subsets, and multiply the volumes together. One thing to note is that each 

of these connected components corresponds to a parallelepiped, and the number of 

vertices of an n-dimensional parallelepiped is 2". Since all of our vectors are integral,

each vertex will also be integral. In particular, say P  = {AiVi +  A2V2 H 1- Anvn :

Aj  E [0,1]}; these 2" vertices occur when Aj  E {0,1} for each j  — 1 , . . .  ,n . The 

question, then, s whether or not we can get an integral point when not all Xj are 

precisely 0 or 1 .

Each Vj corresponds to an edge in Gs by Definition 3.1, and each Xj becomes 

a label on the edge. In order for the zth index of AjVi +  A2V2 +  • • ■ +  Anvn to be 

integral, we need the sum of the labels of the edges of the form ij , j i ,  and i to be 

integral. Let L{i) be this sum.

T C : We claim that, for a subset S  C Bd whose graph Gs  is a tree component, 

the only integer points of Z ( S ) are its vertices; that is, every edge of Gs  receives an 

integer label. We shall proceed by induction.

Suppose Gs is a tree on 2 nodes. This tree has one edge, wnich needs an integral 

label — sither 0 or 1 — in order for L( 1) and L(2) to be integral; thus the only 

integer points in Z (S )  are its vertices.

Suppose, now- that the edges of every tree on n  nodes need integral labels in 

order for L (i) to be integral for every node i. Suppose, then, that Gs is a tree on
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Figure 3.5: Labeling the tree so that each node is integral.

n +  1 nodes. Gs has at least one leaf; call it x, and say that the edge connected 

to node x  is xy. Then xy  needs an integral label, so we label it 0. Now, this edge 

label contributes an integer value to L(y), thus we can remove edge xy and node x 

without changing the rest of the edge labels. We now have a tree on n nodes, which 

needs integral labels. Thus the only integer points in Z (S ) are its vertices.

Thus the relative volume of Z(S), where Gs is a tree component, is 1.

HC: We claim that, for a subset S  C  Bd whose graph Gs is a half edge com

ponent, the only integer points of Z (S )  are its vertices; that is, every edge of Gs 

receives an integer label. As with TC, we shall proceed by induction.

Consider the graph Gs that has a single half edge. This half edge must have an 

integral label — again, either 0 or 1 — in order for L(l) to be integral; thus the 

only integer points in Z (S ) are its vertices.

Suppose, now that the edges of every HC on n nodes needs integral labels in 

order for L(i) to be integral for every node i. Suppose, then, that Gs is a half edge 

component o n n  +  1 nodes. As w th the TC, there exists a leaf. Applying the same
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steps as with the TC shows that every edge of Gs needs integral labels; thus the 

only integer points in Z (S)  are its vertices.

Thus the relative volume of Z(S), where Gs is a half edge component, is 1 

CC: We claim that, for a subset S  C  Bd whose graph Gs is a cycle component, 

the only integer points of Z (S)  occur when Gs is labeled such that the non-cycle 

edges receive integer labels and the cycle edges receive labels from {0,1, ^}.

Suppose G is a cycle component. There are two options: either G is just a cycle, 

or G is a cycle with more edges coming out of it, and the set of edges that stem 

from node i form a tree for each node on the cycle, as demonstrated in Figure 3.6. 

Applying the same argument as in TC shows that these edges that are not a part 

of the cycle need integer labels.

Figure 3.6: A graph that contains a cycle and edges that are not a part of the cycle. 

Thus it suffices to consider an unbalanced cycle on n nodes. Let each \ j  =  as
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shown in Figure 3.7; then for each node i on the cycle, our options are

K O - i + i - 1
K O - H  =  o 

1 1

In any case, L(i) is integral. Thus we have at least one integer point in Z (S ) that 

is not a vertex.

Claim: The only non-integer labeling of the cycle edges that yields an integer 

point stems from all edges being labeled

We shall make use of the notation we used in the proof of Lemma 3.2; that is, 

the edge j ( j  +  1) has sign Thus we need

Ai(ei — aie2) + ^ 2(^2 ~  02^3) H +  An_i(en_i — an-ie n) +  A„(ei — anen) & Zn.

2

Vs

5

Figure 3.7: A cycle with all Aj = |
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Rearranging the left hand side gives

(A i +  A n )ei +  (A 2 — <TiAi)e2 +  • • • +  (A n_i — <rn_2An_2)en_i +  ( —o ^ - i A n - i  — <rnA n )en

n —1
=  y~^(A j — ( j j - i X j - i ) e j  +  (A i +  An ) e i  +  ( —<rn_ iA n_ i  — <rnAn )e n .

j= 2

Thus we need L (j) = A j — Oj_iAj_i G Z for all j  =  2 , . . . ,  n — 1, as well as L(l) =  

Ai +  An G Z and L(n) = — ern_iAn_i — <7nAn G Z.

Since our cycle is unbalanced, there are an odd number of aj — —I. Suppose,

for a minute, that just one Gj is negative; say, for instance, cr3 =  — 1 (Figure 3.8).

Fix A G (0,1), and let Ai =  A. Then

Ai =  A and A2 — Ai G Z =r> A2 =  A 

A2 =  A and A3 — A2 G Z =r> A3 =  A

A3 =  A and A4 -|- A3 G Z =r> A4 =  1 — A

A4 =1 — A and A5 — A4 G Z A5 =  1 — A

Aj  =  1 — A and + \ — A j  G Z A \ =  1 — A

An_i =  1 — A and — An — An_i G Z => An =  A

\ n — A and Ai An G Z Ai =  1 — A.
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Thus Ai =  A and Ai =  1 — Ai; it follows that A =

Figure 3.8: An unbalanced cycle with only one minus sign.

More generally, if an =  1, the only “switches” between A and 1 — A occur for Xj 

when Oj- 1  =  — 1 — an odd number of times — as well as the two switches at An 

and Ai. Thus there are an odd number of switches from Ai to Ai, which means that 

Ai =  A and Ai =  1 — A, which further implies that Aj =  | .

Figure 3.9: An unbalanced cycle with three minus signs, one of which is between 
nodes n and 1.

If an — — 1, we will have all the switches that occur for Xj when a j-i = — 1, 

which is now an even number of switches, as well as one switch at Ai. There are,
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then, an odd number of switches total, and thus Ai =  |  once more. Figure 3.9 shows 

one example in which on — — 1

Thus the only integer points in a cycle component occur when the non-cycle 

edges receive integer labels and the cycle edges receive labels from {0,1, j-}.

Thus the relative volume of Z ( S ) ,  where G s  is a cycle component, is 2.

Let P  C  Bd  be a set of linearly independent vectors. By the multiplication of 

volume, the relative volume of Z ( P )  is 2cc(Gp\  where cc (G p)  is the number of cycle 

components of G p.  □

3.1.3 The Ehrhaxt Polynomial of Z(Bd)

T h eo rem  3.4. Let

rd := {signed, graphs on [d] with only CC, HC, and TC).

Z(Bd) is an integral zonotope, and

£ W 0 =  £
G e r d

Before proving this, let’s return to our original example from this section: Z ( B 2). 

Figure 3.10 shows the graphs that arc in T2; there arc six full-dimensional subsets, 

four 1-dimensional subsets, and one 0-dimensional subset. Only one graph contains
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• i 
*2

Figure 3.10: All signed graphs that correspond to linearly independent subsets of B 2. 

a cycle, and it is full-dimensional. The formula in Theorem 3.4 yields

Lz m (t) = y , (2CC(G)) t 2 ~ H G )

Ge r 2

=  (2°t2~2) + 4 (2h 2- 1) + 5 (2°t2-°) +  (2H2~°)

=  1 +  41 + 712,

which is exactly what we got in (3.1).

Proof. 3y Theorem 2.13, the coefficient of tk is the sum of the relative volumes of 

the fc-dimensional parallelepipeds in the decompos: ion of Z (B d)- By Lemma 3.1, 

there is a bijection between subsets on Bd and certain signed graphs on [d] and by 

Lemma 3.2, these subsets are linearly independent (and thus form a parallelepiped) 

if and only if their corresponding graph contains only CC, HC, and TC. Thus we 

are summing over signed graphs on [d] that have only CC, HC, and TC.

Consider such a signed graph Gp on [d] corresponding to a subset P  of Bd 2 (P ) 

is a parallelepiped, so we need to determine its dimension and relative volume.
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By Lemma 3.3, the relative volume of Z (P )  is 2cc(Gp\

The dimension of Z (P ) is the number of vectors in P. We turn to Gp once more. 

Since the edges of Gp correspond to the vectors in P. we need only count the edges 

of Gp. Consider each component type: CC, HC, and TC. CC and HC both have as 

many edges as nodes, and TC have one less edge than nodes. Since we are starting 

with d nodes, we can subtract 1 from that number for every TC to get the number 

of edges; that is, the number of edges of G p , and thus the dimension of Z (P ), is 

d -  tc{G). □

3.1.4 On or Off the Lattice?

W hat happens to the lattice point count when wc translate our Coxeter permuta- 

hedra? Given our tendency to look at the parallelepipeds that tile our shapes thus 

far, it should come as no surprise that we look at these parallelepipeds for answers 

in this situation as well.

Since all of our generating vectors are integral, all these parallelepipeds also 

have integral vertices before being translated, regardless of which zonotopal decom

position is chosen. Therefore, since we are translating the permutahedra by a half 

integral vector, the vertices of the translated parallelepipeds are half integral; this 

can be seen for the 2-dimensional type B  permutahedron in Figure 3.11.

Thus our question becomes, “W hat happens to the lattice point count of a par

allelepiped when its vertices are half integral?” In Figure 3.11, each parallelepiped
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Figure 3.11: Zonotopal decompositions of Z (B 2) (left) and Z (B 2) (right).

of that decomposition either keeps all of its integer points or loses all of its inte

ger points when translated. Let Z*(S) refer to a half-open parallelepiped whose 

generating vectors are the vectors in S

Lem m a 3.5. Let S  C  Bd be linearly independent. The number of lattice points of 

the Z*(S) + |  is

• the number of lattice points of the Z*(S) if every TC of its corresponding graph 

Gs has an even number of nodes,

• 0 otherwise.

We call a tree component an even TC  if it has an even number of nodes and 

an odd T C  if it has an odd number of nodes.

Proof We first consider a single tree T. In contrast to the proof of Lemma 3.3, we 

are looking for a labeling such that, for every node i, the sum of the labels of the 

edges of the form i j , ji,  and i, which we call L(i), is half integral. We will also be
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choosing our labels from [0,1) instead of from (0,1 One thing to note is that for 

a tree, the number of odd degree nodes is even; thus there are an even number of 

even degree nodes if and only if the total number ot nodes is also even.

Even TC: Let S  C Bd such that the graph corresponding to S  is an even TC. 

We claim that Z*(S) + 1  contains an integer point. We proceed by strong induction.

Let T  be a tree with two nodes. Thus T  has one edge, and we must label this 

edge

Suppose, then, that every tree with 2 ,4 , . . . ,  2n nodes can be labeled such tnat 

for every node, the sum of the labels of each edge going into that node is half integral. 

Let T  be a tree on 2n +  2 nodes. Start by finding all nodes of even degree; if there 

are none, we are done — we can label all edges with and since each node has odd 

degree, we will be adding an odd number of |s , which is half integral.

Figure 3.12: A tree T  with an even number of nodes with the tree convex hull 
highlighted.

Suppose that there axe at least two even degree nodes. Take the tree convex hull 

of these nodes; since there are at least two even degree nodes, this tree convex hull
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contains at least one edge.

Every edge outside this tree convex hull must receive the label of every edge 

connected to a leaf I needs to be labeled with  ̂ so that L(l) is half integral. If 

there are any edges that are not yet labeled, then there is at least one node i with 

an even number of labeled edges—that is, an even number of edges connected to 

leaves. We can prune these leaves (that is, remove the leaf and its edge), since they 

contribute an integral value to L(i). Then i becomes a new leaf, and its edge must 

be labeled with We can repeat this process until the only unlabeied edges are 

a part of the tree convex hull. Looking back at our original graph, we have now 

labeled every edge outside of the tree convex hull with |  and shown that this is the 

only labeling that works. An example of this labeling and tree convex hull is shown 

in Figure 3.12.

The tree convex hull is also a tree; this tree has at least one leaf. This leaf has 

an odd number of ^s being contributed to it, since every edge outside of this tree 

has been labeled with a Thus this edge must be labeled with an integer value; we

Figure 3.13: T  with an edge labeled 0.
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label it 0. Figure 3.13 shows this in the same example tree T  used in Figure 3.12.

Removing this edge, therefore, does not influence the rest of the labels needed; 

let us remove this edge. Figure 3.14 shows what this looks like for T . We are now 

left with two smaller trees, and if we are able to show that both of these smaller 

trees has an even number of nodes, we are done.

Figure 3.14: The two subtrees of T  when the edge labeled with 0 is removed.

It suffices to show that one of the subtrees has an even number of nodes, since 

the total number of nodes did not change and the subtrees do not share nodes. In 

particular, let us consider the subtree in which every edge is already labeled with 

Every node in this subtree has odd degree, and as we stated at the start of oui 

proof, the number of odd degree nodes in a tree is even. Thus this subtree has an 

even number of nodes, and therefore the other subtree also has an even number of 

nodes. Each subtree has at most 2n nodes and thus can be labeled in such a way 

that for every node i , L(i) is half integral. Figure 3.15 shows the labeling for T.

Thus a half-open parallelepiped with a corresponding graph whose TC are all
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Figure 3.15: T  labeled such that for every node i, L(i) is half integral.

even TC stays on the lattice.

O dd TC: Let S  C  Bd such that the graph corresponding to S  is an odd TC. 

We claim that Z*(S) + 1 does not contain an integer point. We shall again proceed 

by strong induction.

Consider a single node. Clearly there are no edge labels contributing to its sum, 

so the sum of the labels of the edges going into it is 0.

Consider also a tree with three nodes. We can try very hard to find a way to 

label the edges such that L(i) is half-integral for each node i, but as soon as we 

label one edge |  to get the half integral value on one of the leaves, then we have to 

choose between labeling the other edge 0, to satisfy the degree two node, or to 

satisfy the other leaf. Examples of failed labelings are shown in Figure 3.16.

Figure 3.16: Possible labelings for a tree with 3 nodes.
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Suppose, then, that every tree with 1,3, . . . ,  2n — 1 nodes cannot be labeled in 

the way we want. Let T  be a tree with 2n +  1 nodes. There are an odd number 

of even degree nodes; take their tree convex hull once more, and as in the even TC 

case, everything outside the tree convex hull must be labeled with

Figure 3.17: A tree T  with an odd number of nodes and the tree convex hull 
highlighted.

Suppose that T  has only one even degree vertex. Then we just labeled every edge 

in T  with which means that the sum of the labels of the edges going into is even 

degree vertex is an even number times \ , which is integral instead of half integral.

Suppose that T has three or more even degree vertices. Then the tree convex 

hull is a tree with at least two edges. As before, at least one of the nodes has 

degree one in the tree convex hull; we must label its edge with a 0, demonstrated in 

Figure 3.18.

As before, we can remove this edge without consequence, thus creating two 

subtrees, as shown in Figure 3.19.

Since the total number of nodes has not changed and the subtrees share no nodes,
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Figure 3.18: T  with an edge labeled 0.

Figure 3.19: The two subtrees of T  created by removing the edge labeled 0.

there must be one subtree with an even number of nodes and one subtree with an 

odd number of nodes. In particular, the subtree with an odd number of nodes has 

at most 2n — 1 nodes, and therefore this subtree cannot be labeled such that the 

sum of the edge labels for each node is half integral. Thus a half-open parallelepiped 

whose corresponding graph contains an odd TC is shifted off the lattice.

CC, HC, and  even TC: We have one more thing to show: for S  C Bd, the 

number of lattice points in the half-open parallelepipeds Z (S ) and Z (S)  +  |  is the
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same when Gs contains only CC, HC, and even TC.

Let S  C Bj, such that Gs contains only CC, HC, and even TC. Say S  =  

{ui i ■ - ■ > Uj,}. If Gs contains only CC and HC, then n = d\ that is, S  contains 

d bnearly independent vectors. It follows that the Z*(S) +  |  has the same number 

of lattice points as the Z*(S)

Suppose, then, that Gs contains at least one even TC. We just showed that the 

translated half-open parallelepiped that corresponds an the even TC contains an 

integer point; call this point p. Note that Z*{S ) is a fundamental parallelepiped of 

span S  =  {x +  A(y — x) : x, y  G S, A G M}. Note also that span S  contains the 

origin. Let

span S  + i  =  j x  +  A(y — x) +  -̂  : x, y  G S, A G R j ;

Z*(S) +  |  is a fundamental parallelepiped of span S  + Then p G span S  +

Our goal is to find a bijection between integer points in Z *(S ) and integer points 

in Z*(S) + | ,  thus showing that each of these half-open parallelepipeds have the 

same number of integer points.

Let if : span S  —» span S  + |  be the map such that tp(v) =  v + p. Since 

p is integral, v is integral if and only if v + p is integral. In particular, if v G 

Z*(S) is integral, then p + v is an integral point in some translate of Z*(S) + | ,  so 

p + v mod Z*(S) +  |  is an integer point in Z*(S) +  \  . Then a point q G Z*(S) +  \  

comes from the point q — p E  span <S, and q — p mod Z *(S ) is a point in Z*(S). □
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3.1.5 Putting It All Together 

T h eo rem  3.6. Let

Td'-= {signed graphs on [d] with only CC, HC, and TC}

and

Td := {signed graphs on d] with only CC, HC, and even TC}.

Z(Bd), the Bd-permutahedron centered at the origin, is a half-integral zonotope, and

£  (2cc(G)) td-tc(G) i f t even,
Ge r d

£  (2cc(g)) ^-te(G) i f  t Odd.
.ggF̂

Let’s try  this with Z (B 2). When t is even, we have the Ehrhart polynomial for 

Z (B 2), LZ(R2) =  7t2 +  4  ̂+  1. When t is odd, we only consider the graphs that have 

no odd TC.

As we can see from Figure 3.20, there are three graphs that have a TC that has an 

odd number of nodes. These are the graphs that correspond to the parallelepipeds 

from Figure 3.11 that lost their integer points when translated. Thus we are left 

with six full-dimensional subsets, two 1-dimensional subsets, and no O-dimenslonal 

subsets. As before, only one, full-dimensional graph contains a cycle. The formula
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Figure 3.20: All signed graphs that correspond to subsets of Z?2 with the graphs 
containing “odd TC” circled.

in Theorem 3.6 yields

£ W * ) =  E  (2cc(G)) f 2- tc(G)

=  0 (2°t2-2) +  2 (2°i2-1) +  5 (2V -°) +  (21t2-0)

=  2t + I t2.

Thus the Ehrhart quasipolynomial for Z (B 2) is

712 +  At +  1 if t even, 

712 + 21 if t odd,

confirming (3.2).

Proof of Theorem 3.6. If t is even, the vertices are integral; thus the even case fol

lows from Theorem 3.4.

If t is odd, the vertices are half-integral. We want to add up the relative volumes
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of all fc-dimensional half-open parallelepipeds that stay on the lattice, as this will 

give us the coefficient of tk. By Lemma 3.5, the only parallelepipeds that are shifted 

off the lattice are those that have a tree component with an odd number of nodes. 

Thus we are summing over signed graphs on [d] that have only TC with an even 

number of nodes, CC, and HC.

As in the proof of Theorem 3.4, for some signed graph Gp on [d] with only even

TC, CC, and HC that corresponds to P  C  Bd, the relative volume of Z (P )  is

and its dimension is d — tc(G). □

3.2 Type A

3.2.1 Half On, Half Off

P ro p o sitio n  3.7. The Ad_ -permutahedron centered at the origin, Z (A d_i), is in

tegral when d is odd and half integral when d is even.

Proof. Recall that A d_i =  (e* — ej : 1 < i  < j  < d}. Since Z (A d- i)  is a zonotope, 

Z (A d_i) is centrally symmetric. In particular, we can determine the center of mass 

by finding the midpoint of the line segment between two opposite vertices; we use 

the vertices 0 and J ]  (e» — ej)-
l < K j < d
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Thus the *th entry is d — 2i + 1.

If d is odd, d — 2i + 1 is even, so \{d  — 2i +  1 — 0) is integral; thus the center 

of mass of Z(A d-i)  is integral. To translate the center of mass to the origin, we 

therefore translate Z (A d-i)  by an integral vector, thus Z(A d-i)  is integral.

If d is even, d ~2i+l is odd, so \ (d —2*+l —0) has denominator 2; thus the center 

of mass of Z{A d-i)  is half-integral. To translate the center of mass to the origin, 

we translate Z (A d_i) by a half integral vector, thus Z (A d-i)  is half integral. □

3.2.2 Quasipolynomial for Type A

Note that the generators of A ^-i are all of the form e* — ej, i < j .  Applying the 

construction of the corresponding graph Gs to a subset S  C ^4d-i C yields a 

graph with only positive edges. Thus we use unsigned graphs.

L em m a 3.8. The subsets of A ^-i are in bijection with graphs on [d] that have no 

half edges.

Proof. Let S  be a subset of A d_x Similarly to the Definition 3.1, we construct the 

corresponding graph Gs by adding the edge i j  for each vector e* — ej £ S. □

L em m a 3.9. Subsets of A d- \  are linearly independent i f  and only if  their corre

sponding graph contains only TC.

Proof. Let S  C A d_i and Gs be its corresponding graph. As shown in the proof 

of Lemma 3.2, balanced cycles correspond to linearly dependent vectors. If we
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consider S' as a subset of B d, all edges of Gs would have a positive sign, so Gs is 

not independent. Thus if Gs contains a cycle, S  is linearly dependent. On the other 

hand, if Gs contains no cycles, then Gs has only TC, which are shown in the proof 

of Lemma 3.2 to correspond to linearly independent vectors. □

T h eo rem  3.10. Let

Fd — {forests on [d]},

Fd :=  {forests on [d] with only even TC}.

The permutahedron Z (A d_i) is a half-integral zonotope, and

L Z ( A d_ 1) ( t ) ~  *

td if t even,
G eF d

5^ id" te(G) if t odd,
< 3eF<j

Proof. This follows from Theorem 3.4 and Lemma 3.9. □

3.3 Type D

P ro p o sitio n  3.11. The permutahedron Z (D d) is integral.

Proof. Recall that Dd =  {e* — e ,̂ e* +  ej : 1 <  * < j  <  d}. Like with Z (A d_i), we 

need to show that \  5^ v  is integral. Since A d_i C Dd, we just need to compute
veDd

£  (et +  ej)- 
1 <i<j<4
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Thus

\  v = \  (  (ei ~ ei)+ E  (ei +
v e D j  \ l .< i < j < ( i  1 <i< j< d  j

= \  ~ 2i + + 5 ^  ~
1 - ̂  A 

=  — ^ ^ (2  d — 2 i)ei
i= 1

d

i=l

which is integral. □

Thus Z (D d) and Z (D d) have the same Ehrhart polynomial; see [1].

3.4 Type C

Theorem  3.12. The permutahedron Z(Cd) is integral.

Proof. Recall that Cd =  {ej — ej, e* +  ej : 1 <  i < j  < d} U {2e* : 1 <  z <  d} Like 

with Z (A d~i) and Z (D d). we need to show that |  v  is integral. Since Dd C Cd,
vGCd
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the only additional part is (2ej). Thus

i=1

^Ev=^( E («.-«.)+ E fe+'-i+Ew
veCd \l<»<j'<d 1 <i<j<d «=1

1 ^
=  r  ]^(2<2 -  2* +  2)* 

i=1
d

=  ^ ( d - t  +  ijei,
i=l

which is integral.

Thus Z(Cd) and Z(Cd) have the same Ehrhart polynomial; see [1].

Figure 3.21: The vertices of Z(C2) stay on the lattice.
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