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Chapter 1 

Introduction

Sampling theory is the field of mathematics concerned with reconstructing functions from 

various sampled points. > One of the earliest examples of this is the Shannon-Nyquist 

sampling theorem which provides a reconstruction formula for band-limited functions 

(see definition 2.14) and is presented below:

/./x , v-i xsin(^(;c — bn))
f (x )  =  t>Zf(l>n)  V , '  ,

n€Z v ^n)

with the convergence of the summation uniform over compact subsets of R. From this 

formula we see that /  can be uniquely reconstructed from the sampling points, f{bn).  

However in practical situations sampling points will not be uniformly distributed. In order 

to have a reconstruction formula we need the set to be a set of stable sampling, meaning 

that there exists constants 0 <  A <  B <  °° such that the following inequality holds for all
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functions /  that are band-limited on a set Q.:

All/ll2 < £ |/ (A )I2<b||/II2
AgA

where A is the set of stable sampling. By the standard Fourier transform, this is equivalent 

to the exponential function {e2lcl̂ 'x}xeA’ forming a frame on L2 (£l) defined by satisfying 

the condition below: There exists a finite 0 <  A <  B such that

All/ll2 < £  I (/,«“ •') I2 < fill/ll2
AeA

for all f e L 2 (S).

The classical Landau density theorem tells us that if A is a stable sampling set for Q. 

then the density is greater than |H| where | • | is the Lebesgue measure.

In this thesis we will consider the case where we have a signal /  that is sampled though 

multi-channels by the values {gi */(Ai)}£Lj, where g,- are smooth continuous functions, 

which are the channels, and A,- is sampled through a distribution (locally finite Borel 

measure) The collection is a convolutional stable sampling if it satisfies

the following condition: There exists constants 0 <  A <  B <  °° such that

All/ll2< £  / l«,*/(Ai)|2<iH,(A,)<B||/l|2
i=lJ

for all band-limited functions /  on £1 .

We will naturally develop the equivalence of convolutional stable sampling and con­
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tinuous frames of windowed exponentials on L2 (Cl) and present a general version of the 

Landau density theorem under this setting 

Theorem 3.1:
N

Let Q C r  have finite Lebesgue measure. If (J £(g j , i l j )  form a continuous frame
7=1

for L2 (Cl), denoting g x j  '■= gj (x )e lKlXx, with Hg^jlb < C f o r  all j  G { 1 ,2 ,. . . ,# }  and 

A € supp flj, and denote its canonical dual as h  ̂j ,  then

D ~ ( t n ) > §
y=l 3

where C3 =  C2 ||5_1|| wz7/i 5 being the continuous frame operator from chapter 2. Addi­

tionally in the case o f the HjS being the discrete measure, C3 =  1.

As an application we also find a necessary sampling condition for the dynamical sampling 

introduced by Aldroubi et al. in [1].

The thesis is organized as follows. In Chapter 2 we will review the basics of frame

theory and introduce the notion of continuous frame which will serve as the basis for the
%

convolutional sampling and continuous frame windowed exponential. In chapter 3 we 

will prove our main theorem, with the applications following in the end of chapter 3.
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Chapter 2 

Continuous Frames and Sampling Theory

2.1 Frame Theory

In 1952, Duffin and Schaeffer introduced the notion of a Hilbert space frame in [3] when 

they were studying non-harmonic Fourier series. Following the work of Daubechies, 

Grossmann, and Meyer in [2], frame theory began to receive attention in applied har­

monic analysis. Now frame theory is used widely in signal and image processing, data 

compression, and sampling theory.

Definition 2.1 (Frame). A sequence {x„}„e/, where I is a countable index set, in a Hilbert 

space H  is a. frame for H  if there exists constants 0 <  A <  B <  «>, called the frame bounds, 

such that for all x € H :

A M 2 <  Ll<*>*n) |2 < 5 | |* | |2.
n€l

(2.1)
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When A =  B, we say that {jc„}„e/  is a tight frame. Likewise when A =  B =  1 we say 

that {jt„}„e/ is a Parseval frame.

Frames should be regarded as an overcomplete basis, one where in general a vector 

x €  H  can be expanded in a nonunique way. Because of such redundancy, frames are 

widely used in real-world applications like signal processing. If H  is finite-dimensional, 

we note that any spanning set of H  is a frame. For more details concerning frame theory 

we refer the reader to [5].

Example 2.1. Let H  =  R2, and {xn} n̂ i =  { (0 ,1 ) , ( ^ ^ , ^ ) , ( ^ , ^ ) } .  We see that 

{xn}n€i spans R2 and satisfies the equation:

£ l(* ,* n ) | 2 =  ?IW|2-
nei L

This frame {xn} n̂ i is commonly referred to as the Mercedes-Benz frame.

Definition 2.2 (Exact Frame). A frame, {x„} is an exact frame when the subset {xn} n̂ j 

ceases to be a frame for any j .

An exact frame is also called a Riesz basis. In addition to the different types of frames 

listed above, we now to introduce the three important operators in frame theory.

Definition 2.3 (Analysis Operator). Given a Hilbert space H  and /  €  H  with {xn} nei 

a frame in H  then the analysis operator of {jcn}nei is defined as T : H  —> £2 (I) by 

/ { { f  ixn)}n€l-
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Definition 2.4 (Synthesis Operator). Given a Hilbert space H  and /  e  H  with {xn} nej 

a frame in H  then the synthesis operator of {xn}nej is defined as T* : i 2 (I) —> H  by

On L  a nXn-
n el

Finally we define the composition of the analysis operator and the synthesis operator, 

called the frame operator.

Definition 2.5 (Frame Operator). Given a Hilbert space H  and /  €  H  with {xn} nej a 

frame in H  then the frame operator of {xn}nej is defined as S := T*T : H  -4  H  by 

S f =  I  ( f ,xn)xn.
n el

Note the frame inequality, (2.1) is equivalent to the following:

All/ll2 < ( S / , / ) < B ||/||2 «=*■ A I <  S <  BI.

One can then prove that S is both self-adjoint and invertible as in [5]. Therefore we see 

that:

f  =  SS~'f  =  £  (S~1f , x n)xn =  ( f ,S ~ lxn)xn. 
nel nel

This provides a reconstruction formula for /  and motivates our next definition.

Definition 2.6 (Canonical Dual Frame). Given a Hilbert space H  and f  E H  with {xn}„e/ 

a frame in H  then {5_ 1x„}„€/ forms the canonical dual frame of {x„}„e/.

In general {S_ 1x„}ne/ is not the only frame that provides a reconstruction formula, 

giving rise to the notion of a dual frame.
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Definition 2.7 (Dual Frame). Given a Hilbert space H  with {jc„}„€/  a frame in H  then any 

frame {yn}«e/ in H  that satisfies the following equation is called a dual frame of {xn} nej:

f =  L  ( / ’?«>*«
n= 1

for all f e H .

2.2 Continuous Frames

Definition 2.8 (Continuous Frame). Let H  be a Hilbert space, X  a locally compact space, 

and /J. a locally finite Borel measure on X.  Then a set of vectors in H { f x}xex along with 

a measure jU is said to be a continuous frame if there exists constants 0 <  A <  B <  °° such 

that

■411/ I f  < /  !</,/,) ! > ( * ) <  f ill/ ll2 (2.2)
J  X

for all /  G H  and the map x i-» ( / ,  fx) is ju-measurable for every / .

Example 2.2. In the case that X  =  N, and ju =  5^ we see that

■4||/ll2 <  / 1 i f M  | > W < S | | / | | 2
« / X

reduces to

A| | / l l2 < E l < / , / , > l 2 < s | | / l l 2.
X=1
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Therefore the continuous frame is a natural generalization of the frames mentioned earlier 

in this chapter.

To define the analysis, synthesis, and frame operators in the continuous frame setting 

analogously to before, we need the following weak formulation of an integral of Hilbert- 

space valued functions.

Definition 2.9. Integrals of the form

are defined in the following sense: f f xdpt{x) is defined to be the unique element C E H  

such that

Definition 2.10 (Continuous Analysis Operator). Given a continuous frame { f x}xex the

Definition 2.11 (Continuous Synthesis Operator). Given a continuous frame { f x}xex the 

continuous synthesis operator T* : L2 (H) —i H  is defined by:

Definition 2.12 (Continuous Frame Operator). Given a continuous frame { f x}xex the 

continuous frame operator is defined as follows using the weak formulation:

( y , c ) =  f  (y, fx) d p  (x) Vy e h

( f , f x ) ^  fx i f ,  f x )dn(x)

S : H  H  by S f  := fx ( f , f x) f xd^i(x)
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Definition 2.13 (Continuous Dual Frame). Given a continuous frame { f x}xex, another

In particular {S 1f x}xex is a continuous dual frame of { f x}xex and is called the 

canonical continuous dual frame.

2.3 Sampling and Windowed Exponentials

In this section, we will study the relationship between sampling theory, frames, and win­

dowed exponentials. Detailed exposition can be found in [9] and [5]. This relationship 

will form the foundation for our main theorem in the following chapter.

2.3.1 Sampling Theory

Given a signal (function) /  and a discrete set of samples of / ,  { /(x n)}ne/ a natural ques­

tion is whether or not the samples can be used to reconstruct the original signal. In order to 

obtain the reconstruction we impose the natural assumption that f  is in the Paley-Wiener 

Space.

Definition 2.14 (Paley-Wiener Space). Let £1 € be a measurable set of finite Lebesgue 

measure. The Paley-Wiener space of functions for a set £2, denoted PWq , is the set of all

continuous frame {gx}x^x is said to be a continuous dual frame of { f x}xex if it satisfies 

the following condition for all /  6  H:
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L2 (Rd) functions that have compactly supported Fourier transforms in Q

PWq, :=  | /  e  L2(Rd) : s u pp ( f ) C £2 j  .

If /  €  PWq , f  is typically referred to as a band-limited function.

One result of the reconstruction of band-limited functions is the following theorem:

Theorem 2.1 (Shannon Sampling Theorem). If 0 <  b <  1 then fo r all f  €  PWj_^] we 

have
*, « , v-, , /f , sin(^(x— bn))

Where the sum converges uniformly over compact sets.

In general we define sampling in the following sense:

Definition 2.15 (Stable Sampling). Let g be a function, then a set A is said to be ag 

convolution stable sampling set for f  if there exists constants 0 <  A <  B <  °o such that:

All/ ll2 < E l / W I 2<£|l/ll2, v/€/W n
AgA

By the Parseval and Plancherel theorems, one can deduce the following theorem:

Theorem 2.2. A is a stable sampling set for PWq if and only if {elm x̂}xeA is a frame 

fo r L2 (Q).
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2.3.2 Windowed Exponentials and Convolutional Sampling

Samples of band-limited functions can also be taken through convolutions with certain 

kernels.

Definition 2.16 (g convoluational stable sampling). Let g be a function, then a set A is 

said to be a g convolution stable sampling set for /  if there exists constants 0 <  A < B <  <*> 

such that:

All/ll2 <  E I * * / ( A ) | z < B | | / | | 2.
AeA

Definition 2.17 (Windowed Exponential). Given a Hilbert space H , a set A C  H  and a 

function g, the windowed exponential of g is the set {g{x)e2ml̂ "  ̂}^eA =: A).

We can now provide the following generalization of Theorem 2.2:

Theorem 2.3. The following are equivalent:

1. $  (g, A) is a frame for L2 (Q).

2. A uniformly discrete set A is a G convolution stable sampling set fo r  PWq , where 

G =  (g la )  and 1q is the indicator function o f Q.

3. {G(- -  A )}asa is a frame fo r  PW&.

Proof. Let S'{A ,g) be a frame for L2 (Q.). Then there exists 0 <  A <  B <  °° such that for 

all / € L 2(fl):

A j s \f\2 -  L  I /  /(* )  dx\2 <  B | / | 2.
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Looking at the value inside the middle absolute value we make the following observations:

/  / M  d x = <2-3>

=  / / ( « ) ( «  IqH I - A M I -  (2.4)

=  ( / , ( « l n n - - A ) )  (2.5)

=  (2.6)

By replacing the quantity on the left-hand side of (2.3) with the quantity in (2.5) and not­

ing that ( / ,  (g 1ft)(• — A)) =  ( / ,  (g In)) by the Plancherel theorem, we see that 1 implies

2. Likewise we note that the equality of lines 2.3 through 2.6 shows that 2 implies 3 and

3 implies 1, completing the theorem.

□

The main problem now when thinking about sampling is to classify which (A,g) will 

generate a convolutional stable sampling or equivalently a windowed exponential. One of 

the well-known results by H. Landau [7] states that the necessary lower Beurling Density, 

D~ (A), is at least as much as the Lebesgue measure of the set £2.

Definition 2.18. Denote a cube of side length k and center x as Qk(x).

Definition 2.19 (Lower Beurling Density). The lower Beurling density of a set A C
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D  (A), is defined as follows:

D~ (A) =  liminf inf # (Anj3r(* )),
r^ ° °  x e R d r *

Theorem 2.4 (Landau Density Theorem). Let £2, A C Rrf. Then A is a stable sampling 

set for Cl if  and only if:

zr(A)> |Q|.

2.3.3 Multi-windowed Exponentials and Multi-Channel Convolutional 

Sampling

In this section we also define multi-windowed exponentials and multi-channel convolu­

tional sampling.

Definition 2.20 (Multi-Windowed Exponentials). Given H  a Hilbert space, a collection

of sets Aj  C H, with 1 <  j  <  N  and a set of functions { g j } ^  the multi-windowed expo-
N
nential of {gy} is 8  =  |J d?(gj,Aj).

y=l

Definition 2.21 (Multi-Channel Convolutional Sampling). A collection of sets Aj  is said 

to be a multi-channel g j convolution stable sampling set for /  if there exists constants 

0 <  A <  B <  oo such that:

N
2-4|l/l|2< IE l * y * / ( ^ ) |2<B||/ll

;=U e Ay
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We now generalize the concept of a windowed exponential into the continuous setting.

Definition 2.22 (Continuous Multi-Windowed Exponential). Given a Hilbert space H,a

set of measures {/i/}yL= 1 and a set of functions { g j } ^ ,  we denote the continuous multi-
N

windowed exponential of gj and flj as 1J <o(gj, Hj). A continuous multi-windowed expo-
7=1

nential is a frame for Q. if, given a set Q e  Rd and collection of L2 functions { g j } ^ ,  

there exists constants 0 <  A <  B <  °° such that for all /  €  L2 (Q. ) :

m ?< tf I /
2

2

Example 2.3. Let m be the Lebesgue measure of R and let Q. C Mr, then &(\n,m)  forms 

a continuous frame over L2 (Cl)

I ^
[  \ f  f(x)e~2’ l l*dx d m ( \ ) =  I \ ( f l a y ( l ) \ 2dX 

«/R |«/n J

=  J \fl&(x)\2dx 

=  /  \f \2dx,

where the first and second lines are equal by the Plancherel identity.

The critical difference between the continuous windowed exponential and windowed 

exponentials is that the A which are elements of a set A e  Rd for windowed exponentials 

are instead only required to be from according to the distribution Hj for continuous
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windowed exponentials. The continuous analog of the Beurling density is defined below.

Definition 2.23 (Continuous Lower Beurling Density). The continuous lower Beurling 

density of a measure, jU, of a set R d is defined as

D~(ji)  =  lim in fin f-^ * ^ .r—>oo x

In the next chapter we will prove our main theorem for the necessary density condition 

for the frame of continuous multi-windowed exponentials.
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Chapter 3 

Generalized Landau Density Theorem

In this chapter we will prove a generalization of the Landau density theorem in the set­

ting of continuous multi-windowed exponentials. As mentioned in the previous section,

H. Landau determined the minimum density required for stable sampling in his 1967 pa­

per [7]. The particular manner in which we prove this generalization is adapted from a 

simplified proof of the original Landau density theorem by S. Nitzan and A. Olevskii in

[8]. Using the notation from the previous chapter we can now state our main result, the 

generalized Landau density theorem:

N
Theorem 3.1. Let £1 €  have finite Lebesgue measure. If  (J <g(gj,[lj) form a con-

7=1
tinuous frame for L2 (£l), denoting g x j '■= gj (x )e2m^x, with | |̂ A,y 112 <  C for all j  €  

{ 1 , 2 , and A 6  supp fij, and denote its canonical dual as h \ j, then

» - ( ! > / )
7=1 ° 3
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where Ci =  C2\\S 1 1|.

Note that when N  =  1 and /! is the counting measure, we retrieve Landau’s classical
N N

result. We also note that the inverse Fourier image of U (gj,Hj) is \J^(gj,Hj) which

N , Nforms a frame for PWq by Theorem 2.3. The dual frame of U^(gj,Hj) is the inverse 

Fourier image of S’, which we will denote by $ .

3.0.1 Lemmas

In this section we will state some definitions and lemmas necessary for the proof of the 

main theorem.

Lemma 3.2. Let (v^,ju) and (ux,fl) be continuous dual frames in I? {Cl) then,

J h (x)ux (x)dn(X) =  |ft|,

where v^,ux are inverse Fourier transforms ofvx and ux respectively, ie.
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Proof. Using the definition of continuous dual frame in the second last line we have

j  vx(x)ux(x)dn(X)

=  j  ( n , e - x) (e -x, ux) d n ( A)

= (J {e-x,ux)vidn(X),e-x)
=  ( e - x i e - x )  —  1^1 •

□

Definition 3.1 (Wiener-amalgam Space). Given 1 <  p, q < ° °  and a  >  0 the Wiener- 

amalgam space, W(LP,£q) is all of the functions, /  on Rd such that

£  \ \ f ' XQa(ak)\\p ) < ( 
KkeZd J

The following lemma is proposition 2.12 from [6].

Lemma 3.3. Let Q. be a bounded subset o f R , and let 1 <  p  <  2 be given. Then for

f  E L2 (Q) we have

/  e  Lp(Rd) = >  f  G W(C,£P) =  {F  G W(L°°,£q) : F is Continuous}.

Proof. Proof in [6 ].

Lemma 3.4. $  has the following properties:

□
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1. \\hxj\I2 <  Ch fo r  some C\ and V h x j € S.

N - ?
2 . £  / j(jc)| d[lj(X) <  C2, where C2 is the upper frame bound o f S’ and Vjc.

7=1

I ( h j M j )  | <  C3 V; G {1,2, and VA € supp jlj.

Proof By Plancherel’s theorem we know that | 112 =  II^AjIb- Additionally we note

that

I I M ^ I l s - ' l H M b  

s l l s - ' l l - I W b

< | | 5 - | ||M ai||Sy||2 = C i  

justifying claim 1. Claim 2 follows from the fact that £  is a frame in L2 (Cl):

£  / I h j ( * ) \ 2d H , W  =  £  / 1 l> y ( A )  <  c2||^|||2(£2).
; - i j / - l '

For claim 3 we note by the Cauchy-Schwartz inequality

I ( h j i h x j )  I <  WfajWi-\\hx,j\\2

< W h j h - C x

<  Max\\gj \ \2 -Ci

= c3.
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□

Finally we note that by Proposition 17 in [4] that we have the following lemma:

N
Lemma 3.5. If £  =  |J  $ (g j , j± j )  forms a frame then jUj has the property that there exists 

j=  1
a Cj >  0 such that:

supjti/(2iM) < Cj.
xeRd

Measures with this property are called translation bounded measures.

3.0.2 Proof of the Main Theorem

Let £ >  0. By Lemma 3.3 g x j  € W(C,l l ) thus we can find a b large enough such that

£  sup \gj{ § ) \ 2 <  e2 . (3.1)
n e Z d \ Q b{0 ) $ € Q i (n )

We claim that

N  ,

lim sup Y  | | , (A — x)\2dHj(X) =  0 . (3.2)
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Proof. For any R >  b we have the following:

\ g j ( X - x ) \ 2dnj(X)
iV p

%h-x) € Q r (xY

S E  I  L  ,m , . I M A - * ) I 2< W )
j = ln&Zd\Qb(0) ( x)zQi(n)

^ E  E  L  sup l£/(S)l2<%(*)y=l/iezrf\(2fc(0) >/(A-A:)e21 («) ̂ egi (n)

< E  E  /f/(Gi(*)) sup \gj{ $ ) \ 2
j = l n e Z d\ Q b(0 ) ^ e g i ( n )

< E  E  c j sup i^y(^)i2
7=inezrf\g*(o) ^Qi(n)

< E C7 E  sup l5y(^)l2
7=1 nGZd\ e 6( 0 ) ^ 2 i ( n )

N
< i c j e 2,

7=1

where the third to last inequality is due to Lemma 3.5.

Therefore we have the conclusion that

£  x / \ !#/(* - x)I2^ 7'(A) <  e2 Vx G IE

for any sufficiently large R. Now consider a cube Qr(y) with r >  2b.

,d

□

(3.3)
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Let Q+ := Qr(y) +  Q2i>(0) and let Q be the cube such that Q +  <22* (0) =  Qr(y)- By 

Lemma 3.2 we see that

A := ' L j RJ ^ A x) K j ( x)d ^ (x ) =  la l-

Next we separate A into:

N • A X := I f  h j ( x ) h x j ( x ) d n j ( l )
M q~

N

A i'.= I / gxj (x ) hk J (x)di i j{X)
j = l Q + \ Q -

N
A3 := I  /  §ij(x)hxj(x)dHj(X).  

j= iR\e+

We can see with claim 2 of Lemma 3.4, (3.3) and the Cauchy-Schwartz inequality that

/  .. \A3 \dx =  f  | £  I  gX j (x)hkj(x)dHj(X)\dx  
JQriy) JQriy) /= 1 /

'  R<*\g+

< / \ , L i  /•'GrGO ;= 1 •(Rrf\e+
N

< f  C2
JQr(y)

R“\Q+

■ edx

= C2\Qr(y)\e.
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Next from claim 3 of Lemma 3.4, (3.3) and the Cauchy-Schwartz inequality we have

1/  Al\JQr(y)
/ ,, E  / SX,j(x)hXj ( x ) d ^ j ( l ) d x  
JQAy) jTi ■/(?- 

E  / / , J x j ( x ) h j ( * ) d x d i i j ( X )
j = \ J Q~ J Qriy)

T.Jq_ [(hjAj) - jK̂ (yhjMhĵ )dx'jd̂(k)

2 E / e_ I A j>l < W ) +  E / fi_

< f  I C3 W )+LI  |
d^j{X)

dnj(X)

< c 3f^(fir(y))+c2£X>,02r(y)). 
y=i y=i

From claim 1 of Lemma 3.4, the Cauchy-Schwartz inequality, and the condition that 

H&ljlh <  C for all j  g {1 ,2 , ...,JV} and A e  supp jtty we obtain:

I  \A2\dx =  J  | £  /  gA j(x)fcAJ(x)<//i,(*)M*
JQr(y) JQriy) j = \J Q +\Q

-  L M E l  L xn h j ( x ) h , j ( xW M ) \ d x
JQr(y) j = 1 ^G+\ 2 “

-  In+\n  E  L  M‘/e+\e'y=i*/GrCy)
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5 h-\Q- % L"
< / fine. E  ( ( l i M ^ O M * ) * ) ^ )

~L<ri?C'dili(X)
= d - q ^ j ( Q +\Q~).

7=1

Combining all of this we obtain our desired result:

IGr(y)||Q| = /Jc
Adx

Qr{y)

< c ^ i { Q r { y ) ) + c 2e ^ j m y ) ) + c ^ - c \ ^ j { Q + \ Q r ) + C 2 \Qr{y)\e.
7=1 7=1 7=1

Thus,

AT AT
c31 HjiQriy)+ C2e I  fij(Qr(y)) i \ N

—— w a r   |n| - \m l> (e+ ̂ e_) -C2£-
Therefore,

N N

min
r= \Q r(y ) \ , r>2b

c31 Hj(Qr(y)) +C2e I  Hj(Qr(y)) i *
7=1   7=1 ^  | ^ |--------------->  |n |— p - L  £M>(*2 + \ e - ) - c 2£.

Now if we let r —> °° and e —>• 0 and we note that [ij (Q+ \Q ~ )  is bounded because Q+ \  Q~
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is a square annulus of width 2 b we see that

V7'= l

as desired.

„ \ c3 | n (6 rW )
C3 D~ [ V  U; I =  liminf inf —— — ---------- >  IHI

3 \ h  r->°o r=\Qr(y)\ T*  '

3.0.3 Applications

Corollary 3.6. Let {Ay}^=1 be a collection of discrete sets and jlj =  8\ r  Then C3 =  1
N
andD  ( £  ju,) >  |Q|.

7=1
Proof. Note that the C3 constant emerges from the term | (gx,j,hxj)  I which in the discrete
N
case is bounded by 1. This is due to the fact from [5] that for any frame {xn}  if x =  £  cnxn

n— 1
then

£  kn|2 =  £  | faS-'xn)  |2 +  £  |Cn ~  (*,S_ 1*n) |2.
n= 1 n— 1 n= 1

Thus in the specific case thatx =  xn we see that c,- =  0 for all i ^  n and c„ =  I. Hence

1 =  £ l  (Xn,S-lXi) \2 +  £ | $ i ( l )  “  (xn,S~lXi) |2.
1=1 1=1

iV _ _
Therefore we see that 1 >  jc*) | and specifically 1 >  | (x„,S 1jc*) | . Since1= 1
hxj  =  S_1g x j  we see that this result implies 1 >  | ( g x j^ X j )  |2 as desired. Next we 

note that in the case that jij =  5a;
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c 3 LHj(Qr(y))  | # ( a jn Q r iy ) )
liminf inf — — —-i--------- =  liminf inf 7 1

/ • - > ■ < »  r=\Qr(y)\ r-^ °° r=\Qr(y)\ H

N
Corollary 3.7. If  (J <o(gj,flj) where jlj =  fl fo r  all j  forms a frame for L (Q) then 

7=1
D~ (ju) =  7n particular if fl =  8\  then D~ (A) >

Proof.

N -D ~ (n)  =  N -liminf inf
r=\Qr(y)\ r “

=  lim in f in f
r-H »  r = |g r (y)| r “

=  D~(Nn)

\j=1

>M.
C3

□

One of the limitations of sampling theory when being applied to real-world applica­

tions is the requirement on the sampling points being taken arbitrarily, due to physical 

constraints. Therefore the Beurling density of the sampled points is often below |£2|.
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However in many applications, the signal is known to evolve with respect to time under 

a certain time evolution operator. Dynamical sampling exploits this fact to improve upon 

classic sampling. Using an under-sampled set of points and this time evolution operator, 

one can generate a large enough set for sampling. A practical question to ask now is, 

if an * f ( x ) =  fn(x), the signal at time t =  n, what is a lower bound on n so that stable

sampling can occur? That is to say given a signal /  and the kernel of a time evolu-
N .

tion operator a, for what choice of N  will U 8x)  where X  is a discrete set be a
;= 1

o N  • „
frame for L (£2)? From Corollary 3.7 we see that if (J <£(a} , 8x) is a frame for Lr{Q)

7=1
that D ~(8x) >  Next by Corollary 3.6 we can further reduce this to D ~(8x) >  

Noting that D~ (8x ) =  D~ (X), we have the following necessary condition N >  .

Example 3.1. Let £ 1 =  and X =  mZ, and let a be the kernel of a time evolu-
N ■ 7tion operator, with [J &(aJ, 8x) forming a frame for L {Q). Then because |fi| =  1, and 

7=1
D~ (X) =  ^ we see that N > j- =  m.



28

Bibliography

[1] A. Aldroubi, J. Davis, and I. Krishtal, Exact reconstruction of signals in evolutionary 
systems via spatiotemporal trade-off, J. Fourier Anal. Appl. 21 (2015), no. 1, 11-31. 
MR 3302100

[2] Ingrid Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expan­
sions, J. Math. Phys. 27 (1986), no. 5, 1271-1283. MR 836025

[3] R. J. Duffin and A. C. Schaeffer, A class o f nonharmonic Fourier series, Trans. Amer. 
Math. Soc. 72 (1952), 341-366. MR 0047179

[4] Jean-Pierre Gabardo, Convolution inequalities in locally compact groups and unitary 
systems, Numer. Funct. Anal. Optim. 33 (2012), no. 7-9,1005-1030. MR 2966142

[5] Christopher Heil, A basis theory primer, expanded ed., Applied and Numerical Har­
monic Analysis, Birkhauser/Springer, New York, 2011. MR 2744776

[6] Christopher Heil and Gitta Kutyniok, Density of frames and Schauder bases of win­
dowed exponentials, Houston J. Math. 34 (2008), no. 2, 565-600. MR 2417411

[7] H. J. Landau, Necessary density conditions for sampling and interpolation of certain 
entire functions, Acta Math. 117 (1967), 37-52. MR 0222554

[8] Shahaf Nitzan and Alexander Olevskii, Revisiting Landau’s density theorems for  
Paley-Wiener spaces, C. R. Math. Acad. Sci. Paris 350 (2012), no. 9-10, 509-512. 
MR 2929058

[9] A.M. Olevskii and A. Ulanovskii, Functions with disconnected spectrum:, University 
Lecture Series, American Mathematical Society, 2016.


