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Chapter 1 

Introduction

This thesis deals with results in the fields of algebraic and geometric combinatorics, 

specifically in the area of Ehrhart theory. Our main objects of study are half-open 

lattice d-parallelepipeds — higher-dimensional analogues to 2-dimensional parallel

ograms with integer vertices and j  <  d non-translate facets removed — and the 

associated S-polynomials (also known as /^-polynomials or Ehrhart /^-polynomials).

Using the interplay of the geometry provided by disjoint decompositions of the 

parallelepipeds and the combinatorics provided by relevant permutation descent 

statistics, we improve upon known inequality relations on the coefficients of the 

^'-polynomials for specific families of half-open parallelepipeds. In particular, we 

improve these inequalities for certain families of half-open parallelepipeds with an 

interior lattice point. Our results for half-open lattice parallelepipeds extend natu

rally to the 5-polynomials for closed lattice zonotopes.

Chapter 2 is a review of the basics. The first section is an introduction to Ehrhart
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theory. We start from the beginning with formal definitions for lattice polytope 

and related terminology such as dimension, hyperplane, face, boundary, relative 

interior, and various notions of volume. We introduce the la,ttice point enumerator, 

or Ehrhart polynomial, of a lattice polytope V , and the related Ehrhart series of 

V. The numerator of the Ehrhart series in its rational form is the 5-polynomial of 

V. In this section we also define what it means for a (5-polynomial to be unimodal 

or alternatingly increasing. These inequality relations on the coefficients of the 5- 

polynomial are the focus of this thesis.

In the second section of Chapter 2 we introduce the main geometric objects of 

our study: lattice parallelepipeds, in particular unit cubes, and lattice zonotopes -  

all integrally closed lattice polytopes. We consider a theorem due to Shephard which 

depicts the close relationship between zonotopes and parallelepipeds [11]. We also 

note the close relationship between subdivisions and dissections of a polytope. In 

this way we set up and motivate our later results on the (^-polynomials for zonotopes.

This thesis is part of a joint project with Matthias Beck and Katharina Jochemko. 

Chapter 3, with the exception of Lemma 3.4, is a reformulation of Jochemko’s work 

on zonotopes in [8]. It is the starting point for our extensions and contributions, 

which appear in Chapters 4 and 5.

A conjecture by Stanley [13] infers that the coefficients of the ^'-polynomial for 

every integrally closed lattice polytope are unimodal. Schepers and Van Langen- 

hoven [10] prove that this weakening of Stanley’s conjecture holds for (closed) lattice
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parallelepipeds1, the simplest example of an integrally closed lattice polytope after 

unimodular simplices. Jochemko [8] extends their work to half-open lattice paral

lelepipeds by first interpreting the / 1-polynornials of [10] in terms of refined descent 

statistics on S,i — statistics we call the (A, j)-Eulerian numbers. Using the symmet

ric and recursive properties of the (A, j)-Eulerian numbers provided by Brenti and 

Welker [5, Lemma 2.5], Jochemko proves the (A, j)-Eulerian numbers are unimodal 

and specifies the peak according to d and j . Jochemko further provides a charac

terization of the 5-polynomial for half-open parallelepipeds as a normegative linear 

combination of (A  j)-Eulerian polynomials. Together these results imply that the 

coefficients of the ^-polynomials for half-open parallelepipeds are unimodal. Using 

the aforementioned theorem of Shephard, combined with the Beneath and Beyond 

construction of Koppe and Verdoolaege [9], Jochemko further extends the unimodal

ity results to the ^-polynomials for lattice zonotopes — a (large) family of integrally 

closed lattice polytopes. In Chapter 3, we carefully build up to these results. Addi

tionally, through an extension of Jochemko’s unimodality proof, we show that the 

(A, j)-Eulerian numbers are alternatingly increasing for sufficiently large j .

Chapter 4 deals with the relationship between the (B, f )-Eulertan numbers, a 

refined descent statistic on B,t, the set of signed permutations on [d], and the 5- 

polynomial for [—1, the d-dimensional half-open ±1 -cube with £ non-translate 

facets removed. Our work is motivated by a result due to Brenti [4, Theorem 3.4] as 

seen from the geometric perspective presented by Beck and Braun in [1]. The result 

Stanley’s original conjecture has been disproved in its general form.
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(for q =  1) says that the type-5 Eulerian polynomial B(d, t) is the (5-polynomial for 

the (closed) ±1 -cube [— l , l ] d. In Section 4.1 we characterize B(d,t ) as a positive 

linear combination of (A, j)-Eulerian polynomials of the same degree. We do this 

via a disjoint decomposition of [—1, l]d into unit cells Uf where I C [d], geometric 

objects which are congruent to unit d-cubes. Using the symmetric properties of 

the (A, j)-Eulerian numbers [5, Lemma 2.5], we give a geometric proof that the 

coefficients of B(d, t) are symmetric and unimodal, and thus alternatingly increasing. 

This is not a new result. It follows from [4, Theorem 2.4] and can also be deduced 

from [10, Proposition 2.17].

In Section 4.2 we extend the methods of [1] to half-open ±l-cubes. We consider 

a disjoint decomposition of [—1, 1]̂  into half-open unimodular simplices indexed by 

signed permutations (tt, e) € Bd and show that the removed facets of the simplex 

A f£e) are enumerated by our refined descent statistic. In this way we prove that 

the (B, £)-Eulerian polynomial B(+i (d +  1 ,t) is the (5-polynomial for [—1, 1]̂ .

We further prove that the (B, £)-Eulerian polynomial is alternatingly increasing. 

As before this is seen via a disjoint decomposition of [—1, 1]̂  into unit cells. From 

the decomposition we obtain a characterization of the (5-polynomial for [—1, \}(}  as 

a linear combination of (A. j)-Eulerian polynomials of the same degree. The non

negative integral coefficients of this linear combination have symmetric, unimodal 

and recursive properties which we use to show that Be+i(d +  l ,t )  is alternatingly 

increasing. Our geometric perspective results in an alternative geometric proof for
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the palindromic and unimodal properties of the binomial coefficients as well as a 

geometric interpretation of the well-known recursive formula

In Chapter 5 we consider the ^-polynomials for lattice parallelepipeds and zono- 

topes with lattice centrally symmetric edges. An edge of a polytope is lattice cen

trally symmetric if the midpoint of that edge is a lattice point. Using the symmetry 

of the edges as well as results of Jochemko and Schepers and Van Langenhoven 

seen in Chapter 3, we express the (5-polynomial for half-open parallelepipeds with 

lattice centrally symmetric edges in terms of the ^-polynomials for half-open ± 1- 

cubes of the same dimension. In particular, we provide a characterization for the 

5-polynomial as a nonnegative linear combination of (B , £’)-Eulerian polynomials of 

the same degree. Applying our results about the inequality relations on these poly

nomials from Chapter 4, we see that the ^-polynomial for half-open parallelepipeds 

with lattice centrally symmetric edges is alternatingly increasing. We further extend 

the alternatingly increasing results to the (^-polynomials for closed lattice zonotopes 

with lattice centrally symmetric edges using [11, Theorems 54 and 56] and [8, Corol

lary 3.5.3].

We conclude with a short discussion of extensions and open questions.
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Chapter 2 

Basics

2.1 An Introduction to Lattice Polytopes and Ehrhart The

ory

Consider a finite set of points in Mm: Vi, v 2, . . . ,  vn. Imagine shrink-wrapping these 

points in m-space. The object you obtain, called a polytope, is a of-dimensional 

analogue of a 2-dimensional convex polygon. Like a polygon, a polytope is a closed 

and convex geometric object with flat faces and extreme points called vertices. The 

vertices are necessarily some subset of the original set of points. See Figure 2.1.

Figure 2.1: A lattice polytope V. The vertices appear as solid points.
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Formally we define a poly tope V  as the convex hull of v j, v 2, . . . ,  v„:

V =  conv {v i, v 2, . . . ,  vn} := \ : Xi -  0 and Xi =  1 f •
ie[n] J

A lattice polytope1 is the convex hull in Rm of finitely many lattice points 

points in the integer lattice Zm. We are interested in lattice polytopes exclusively, 

so from here on we shall take the term polytope to mean lattice polytope while 

omitting the descriptor. We are also interested in positive integer dilates of V, 

denoted

nV  {nx : x e V } .

The (affine) span of polytope V,

span("P) := {//x  +  Ay : x, y G V  and // +  A =  1} ,

is the translate of a vector space, called an affine space. The dimension of an affine 

space is equal to the dimension of the vector space of which it is a translate. We 

define the dimension of V  as the dimension of span('P) [2]. If V  has dimension d, 

we call V  a d-polytope and write dim('P) =  d.

A hyperplane in Mm is a set of the form

H =  { x e R m : a - x  =  b} for some a G Km and 6 g R .

'A  lattice polytope is also known as an integral polytope.
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Figure 2.2: Supporting hyperplanes Hi and H2  in R2 define a vertex and a facet 
(also an edge) of polytope V  =  conv { ( 0, 0), (2, 0), (2, 2), (0, 2)} .

When a is the zero vector and b =  0, H =  Rm. When this is not the case, the 

dimension of H is one less than the dimension of the ambient space. Just as a line 

(a hyperplane in R2) divides R2 into two spaces, the hyperplane H divides Rm into 

two spaces, called halfspaces. We denote the halfspaces by

H -  : =  { x £  Rm : a • x <  b} and 

H -  : =  {x e Rm : a ■ x > b} .

We call H a supporting hyperplane of the polytope V  if V  lies entirely in one 

halfspace of H [2]. See Figure 2.2.

A face T  of a polytope V  is a subset of the polytope defined by the intersection 

of V  with one of its supporting hyperplanes. That is, J7  =  V  fl H, where H is a 

supporting hyperplane of V. When H =  Rm we have

j  = v d h  = p n r  = V ,
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Figure 2.3: The relative volume of the blue facet of the 3-polytope is equal to 1.

meaning V  is a face of V. When H is a supporting hyperplane that does not meet 

V, then V  D H is empty, meaning T  — 0 is a face of V ■ The faces of a polytope 

are themselves polytopes [7]. V  and 0 are the trivial faces of V  of dimension d and 

— 1, respectively. The faces of V  of dimension 0 are called vertices, the faces of V  

of dimension 1 are called edges, and the faces of V  of dimension d — 1 are called 

facets. A face of V  of dimension r is called an r-face. When r < d, we say r-face 

T  is a proper face of V .

We distinguish between the boundary and the relative interior of a polytope 

V in the following manner. The boundary of V  consists of those points contained 

in some proper face of V  and the relative interior of V  (denoted by V°) consists of 

those points in V  that are not contained in the boundary.

The relative volume of polytope V  is the Euclidean volume of V  relative to 

its affine span [2]. This definition of volume allows us to assign a non-zero measure 

of volume to objects that are not full-dimensional, such as the proper faces of a
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polytope. Consider the blue facet of the 3-polytope in Figure 2.3 for example. The 

span of the blue facet is represented in yellow; it is a 2-dimensional hyperplane. We 

see that the blue facet is a unit square relative to its span. Therefore, the blue facet 

has relative volume 1.

We further define the normalized volume of a rf-polytope V  to be 6?! times 

the relative volume of V  and write vol('P) to denote this value [10]. Normalized 

volume changes the unit of volume measure from the d-dimensional unit cube to a 

('/-dimensional unimodular simplex. We describe these objects in detail below.

A fundamental combinatorial object in Ehrhart theory is the lattice point 

enumerator of a polvtope. The lattice point enumerator of V  counts the number 

of lattice points in the nth positive integer dilate of V  and is denoted by

ehr(V,n) := #  (nP n Z m) .

This counting function for lattice polytopes is a polynomial in n of degree d [6]. 

We observe this in a simple example in Figure 2.4. The result is due to Eugene 

Ehrhart and accordingly, ehr(V,n)  is called the Ehrhart polynomial of V. When 

embedded in a generating function, we obtain the Ehrhart series of V:

Ehr(V,t)  := l +  ^ e h r ( P , n ) r .
n>  1

The Ehrhart series of every lattice polytope can be written as a rational function in
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e h r (P ,l )  =  4

ehr('P, 2) =  9

ehr('P, 3) =  16

ehr("P, n) =  (n +  l ) 2 
n =  1 n =  2 n =  3

Figure 2.4: Observing the Ehrhart polynomial of the 2-cube, 

the following form:
S(V,t) _  <5q +  Sjt +  • • • +  Sdtd 

(1 -  t ) d + 1  ~  (1 -  t)d+l

where the Si are nonnegative integers and (5q =  1 [2, 12]. The numerator S(V,t)

is called the 5-polynomial of V  and the sequence of coefficients (So, Si,. . .  ,Sd) is

called the (5-vector2 of V. A property of this polynomial (vector) with particular

significance to Ehrhart theory is the fact that the normalized volume of a polytope

V  is equal to the sum of the Si [2]; that is,

vol(’P) =  (5o +  (5i +  • • • +  Sd. (2-2)

Specific relationships among these coefficients for particular families of polytopes 

are the focus of this thesis. One property we are interested in is unimodality. A 

(5-vector is unimodal if it has a single peak; that is, if its entries increase up to 

some point, then decrease. Symbolically, (<50, <5i, •••-., <5d) is unimodal if there exists a

2Other names for the 5-polynomial (vector) are Ehrhart /i-polynomial (vector) and h*- 
polynomial (vector).
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k E { 0, 1, . . . ,  d) such that

5o <: 5j <  • • • <  8k >  • • • >  Sd .

We are also interested in whether a 5-vector is alternatingly increasing; that is, 

if

5o 5; 5: 5j <  • • • <■ 5|̂ +ij .

This is a stronger inequality property than unimodality: If (50,5j , . . . ,  5a) is alter

natingly increasing, then (50,5i , . . . ,  5rf) is unimodal with peak at • We say a 

5-polynomial is unimodal or alternatingly increasing if the corresponding 5-vector 

is.

2.2 Parallelepipeds, Unit Cubes and Zonotopes

Given d linearly independent generating vectors V) , . . . .  v (/ e  Z m, we define the 

(/-dimensional (lattice) parallelepiped

0(vi , . . . ,  vd) := < ^  AjVj : 0 <  Aj < 1 > .
[i€[rf] J

A zero-dimensional parallelepiped is a point. A one-dimensional parallelepiped is 

a line segment. A two-dimensional parallelepiped is a parallelogram. A three- 

dimensional parallelepiped (known by this name in layperson’s terms as well) is a
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Figure 2.5: Parallelepipeds living in R3 with dimension d =  0,1, 2, 3 respectively.

3-polytope with three pairs of parallel faces. See Figure 2.5.

The unit d-cube C d := [0, l]d forms the simplest example of a d-dimensional 

parallelepiped. Its generating vectors are the standard unit basis vectors e 1(. . . ,  e :̂

C d =  0 ( e i , . . . ,  ed) ■

A related object is the (lattice) zonotope

Z(ui, . . . ,  U r )  : =  <  : 0 <  A i  <  1 >  ,
[ i e [ r ]  J

where Ui,. . . ,  ur are vectors in Zm. We call Ui,. . . ,  ur the generators of Z {ui, . . . ,  ur). 

When the generators are clear, we will drop the argument and simply write Z. If 

the generators of Z  are linearly independent, then Z {Ui,. . . ,  ur) is an r-dimensional 

parallelepiped and

Z(u i , . . . ,u r) =  0 (u i , . . . ,ur).
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A subdivision ^  of a polytope V  is a non-empty, finite collection of polytopes 

such that

(1) Q G ^  implies all faces of Q are also in

(2) Qi, Qo G c€  implies Qi fl Q-> is a common face of both Qi and <22>

(3) Ueaf Q =  V.

The polytopes that comprise the subdivision are called cells of . Furthermore, 

those cells Q G with diiri(Q) =  dim('P) are called maximal [3].

We further note that the collection of maximal cells Qi, Q?,. . .  Qs in a subdivi

sion of a polytope V  forms a dissection of V. That is, [3]

V =  Q i U Q2 U • • • U a

and

Q° H Q° =  0 whenever i ^  j  ■

The following theorem due to Shephard makes explicit the close relationship 

between zonotopes arid parallelepipeds.

Theorem 2.1 [11, Theorems 54 and 56]. Every zonotope admits a subdivision into 

parallelepipeds. In particular, every d-dimensional zonotope Z (U i,. . . ,  ur) admits a 

subdivision into parallelepipeds where the maximal cells in are generated by the 

linearly independent subsets of { u i , . . . ,  ur} of size d.
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0 (ui,u4)

U2 = (0, 2) . 
Ui =  (0, 1).

u3 = (2,2)

u4 = (3, 1)
0 (U2,U3)

0 (u3, U4)

0 (u2, u4)

(a) generators in Z 2 (b) Z(ui,  u2, U ;,114) (c) a subdivision of Z

Figure 2.6: Generators in Z 2, the 2-dimensional zonotope Z(ui,  112, 11.3, 114), and a 
subdivision of Z  into parallelepipeds.

Figure 2.6 shows a 2-dimensional zonotope Z  generated by vectors Ui, U2, 113, U4 G 

Z 2 and a subdivision c£  of Z  into parallelepipeds. The maximal cells in c€  are la

beled3. Observe that the generators of these maximal cells are exactly those linearly 

independent subsets of { u i , . . . ,  114} of size two. Further observe how the maximal 

cells of form a dissection of Z.

A lattice polytope V  is integrally closed if for all integers n >  1 and for all 

lattice points p € nV. there exist lattice points Pi, P2, • • • > Pn G V  such that

Parallelepipeds and zonotopes are both examples of integrally closed polytopes. We

P =  Pi +  P2 H H Pn •

3We abuse notation here: each maximal cell in '6' is in fact a translate of the parallelepiped by 
which it is labeled.
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Figure 2.7: We can tile the third dilate of 2-parallelepiped V  with 32 copies of V.

use induction and a simple tiling argument to show that parallelepipeds are integrally 

closed. A similar argument holds for zonotopes as a result of Theorem 2.1.

Let V =  0 ( v i , . . . ,  Vd) C Mm be a lattice (/-parallelepiped. When n =  1, the 

desired result is trivially true. Let n >  2. We can tile nV  with ndirn̂  =  nd copies 

of V:

n/P =  U  +  v ) >

where the union runs over all linear combinations of v =  fciVi -I- • • • +  krjvd with 

ki € { 0, 1, . . . ,  n — 1}. See Figure 2.7 for an example with n =  3 and d =  2. Choose 

p € nV  D Z m such that p ^ (n — l)V  D Z m. Then p G (V  fl Z m) +  v for some 

v =  fcivi -I 1- kdVd with at least one ki equal to n — 1. If this is not the case, then
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we have fcj 6 {0,1, . . . ,  n — 2} for all i € [d]. But this implies p G (n — I)?7 fl Zm, a 

contradiction.

We know v G (n — 1)"P fl Zm by definition. Therefore,

v =  px +  • • • +  Pn_i

for some p i , . . .  ,p n- i  G V  fl Zm by the induction hypothesis. Furthermore, p E 

(P H Zm) +  v implies p =  p0 +  v for some p0 E V C\ Zm. Thus we have

P =  P0 +  Pi H f Pn—1 ,

concluding our argument that parallelepipeds are integrally closed.
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Chapter 3 

Half-Open Parallelepipeds and the 

(A, j)-Eulerian Numbers

3.1 Descent Statistics

Let Sd denote the set of all permutations on [d] :=  { 1, . . . ,  d}. We use permutation 

words a =  . . .  ad in single line notation to denote permutations in Srj. For

example, the permutation word a =  4213 in S4  is equivalent to the permutation 

seen in two-line notation here:

1 2  3 4 

4 2 1 3

We call i a descent of a if at > ai+i. For example, the descents of a — 4213 are 1 

and 2. Observe these descents in a permutation diagram of a =  4213 in Figure 3.5.



a(3, 0) =  1 a(3,1) =  4 a(3,2) =  l

Figure 3.1: Permutation diagrams of S3 with descents in red, grouped by descent 
number.

The collection of descents of a permutation a is called the descent set of a. The 

cardinality of the descent set is called the descent number of a. We write

Des(a) := {i G [d — 1] : <Tj > ai+i}  and 

des(a) := | Des(cr)|

for the descent set and the descent number of a, respectively. We similarly define 

the ascent set and the ascent number of a permutation, respectively, as follows:

Asc(cr) := {i € [d — 1] : at < <7*+i} and 

asc(<r) := |Asc(<r)| .

We note that d is neither a descent nor an ascent of a G Sd- It follows that 0 < 

des(cr), asc(a) <  d — 1.

We define the (type-A) Eulerian number a(d, k) to be the number of permu-
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tations in Sd with exactly k descents. That is,

a{d, k) =  | {a  6 Sd : des(cr) =  k} |.

See Figure 3.1 for the Eulerian numbers when d =  3. We further define the (type- 

A) Eulerian polynomial A(d,t) to be the degree-(c/ — 1) polynomial whose A:th 

term has coefficient a(d, k):

d-l
A(d, t) := ^  a(d, k)tk .

k = 0

From Figure 3.1 we see that when d =  3 we have the Eulerian polynomial .4(3, t) =  

1 +  4t +  t2.

Eulerian numbers play an important role in the Ehrhart theory of parallelepipeds. 

For example, the Eulerian polynomial is the 5-polynomial of the unit cube. That is,

S(Cd,t) =  A (d , t ) . (3.1)

See [2] for example, where Eulerian numbers are in fact defined via this equality. As 

we will see, variants of the Eulerian numbers also appear in the 5-vector for other 

families of parallelepipeds. Let us motivate the results described in later sections 

and the methods used to prove them by sketching a proof of (3.1).

The main idea behind our proof of (3.1) is the decomposition of C d into disjoint
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half-open lattice polytopes, V } , . . . ,  Vr, whose (5-polynomials we already know. If

C d =  LI V, ,
iG[r]

where the Vl are lattice (/-polytopes, then

Ehr(C“ , () =  g  Ehr(P(,t) =  £  ,

which implies

8 {CdA) =  Y j 8 {Vh t).  (3.2)
ie[r]

The (5-vector of a polytope encodes information about the lattice point count of 

that polytope. Thus it is necessary that the Vt in the decomposition are disjoint. If 

the Vi are not disjoint and they share any lattice points, then the sum of the lattice 

points in the union will not reflect the lattice point count of C d.

To obtain the disjoint union we desire, we decompose C d into half-open, uni- 

modular simplices. A simplex A  is a (/-dimensional polytope with d +  1 vertices. 

As the notation suggests, simplices are higher-dimensional analogues of triangles. A 

d-simplex A  =  conv {v 0, v 1?. . . ,  v,;} is unimodular if

Vl -  V0,V2 -  v0, . . . , v d -  Vo

form a basis for the sub-lattice Zm fl span(A) [14], In Figure 3.2, A a and A),
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A <y

A a =  con v {(0, 0), (1,1)} A fc =  conv{ (0, 0), (1, 1), (1, 0)} A c =  A b \ A a

Figure 3.2: A unimodular 1-simplex, a unimodular 2-simplex and a half-open uni- 
modular 2-simplex.

computing the set {v j — v0 : j  6 [d] } for each simplex, where v 0 is the vertex of your 

choice. The span of each simplex is represented in yellow. For A a, the intersection 

span(Aa) fl Z 2 is isomorphic to Z, whereas span(A&) D Z 2 is all of Z 2. We say a 

polytope V  is half-open if one or more of its facets have been removed. In Figure 

3.2, A c is a half-open simplex with exactly one facet removed.

A lattice simplex A  is unimodular if and only if it has normalized volume 1 [14]. 

Combining this with (2.1) and (2.2), we learn that S(A,t) =  1 if and only if A  is 

unimodular. Therefore, the Ehrhart series of the unimodular simplices A a and A b 

are

are unimodular simplices of dimension 1 and 2 respectively. This is best seen by
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respectively, and thus the Ehrhart series of the half-open unimodular simplex A c is

(1 - t ) 3  (1 - t ) 2  ( 1 - t )3 '

More generally, the Ehrhart series of a ri-dimensional half-open unimodular simplex

with k facets removed is
tk

(1 -  t)d+1 '

See [14], for example.

Let a G S(i and define

:=  {x  G Cd : x ai < x f f2 < ■ • • < x Cd with xai < x a i + 1  when i G Des(a)} .

A strict inequality in corresponds to the removal of one facet. So is a half- 

open, unimodular simplex with exactly des(cr) facets removed. Every point x in Cd 

is contained in A^ for some permutation a. Furthermore, the strict inequalities at 

the descents ensure that the union is disjoint [1,14]. Thus

c d= U a ;.
aesd

We see this in Figure 3.3 for the 2-cube. We can now conclude with (3.2) that

d-1
s ( c d,t) =  y ,  (d" M =  =  A (d , t ) .

crESd crOzSd k—0
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X2 +
= {x £  C 2 : Xi <  x 2}

X2  +

j> A 2 =  {x G C 2 : x 2 < Xi}

<5

Figure 3.3: The decomposition of C 2  into disjoint half-open unimodular simplices.

That is, the 5-polynomial of Cd is the Eulerian polynomial, and this proves (3.1).

It is well known that the Eulerian polynomial is palindromic. Equivalently we 

say that A(d, t) is symmetric with center of symmetry at and write

permutations in Sd with k descents and permutations in Sd with d — 1 — k descents:

tp •' Sd —> Sd

a i-)- <rrev := adad- i  " '< * l •

Observe the symmetry via permutation diagrams of a =  4213 and trrev =  3124 in 

Figure 3.5.

In addition to being palindromic, the Eulerian polynomial is also unimodal (see

a(d, k) =  a(d, d — 1 — k)

for all d >  1 and 0 < k < d— 1. This symmetry is easily seen via a bijection between
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Theorem 3.3 below). Together these imply that A(d,t) is alternatingly increasing. 

More generally, the symmetry and unimodality of a polynomial together imply that 

it must peak at the coefficient(s) closest to the center of symmetry. Therefore, when 

d is odd, A(d,t ) has a single peak at k =  and when d is even, A(d,t) has a 

double peak at k =  [^ -J  and k =  +  1. (This is confirmed by Theorem 3.3.)

3.2 Half-Open Unit Cubes

We begin this section by introducing another descent statistic and a refinement of the 

Eulerian numbers. For d > 1, 1 < j  <  d, and k G Z we define the (A, j)-Eulerian 

number

cij(d, k) :=  |{<7 G Sj: =  d +  1 — j  and des(cr) =  k}\

and the (A, j)-Eulerian polynomial

d- 1

Aj(d,t) := ^ 2 aj(d, k)tk .
k= 0

For all k < 0 and for all k > d we have aj(d,k) =  0. We treat Aj(d, t) as having 

degree d — 1, though its leading term may be zero. See Figure 3.4 for the (A , j )- 

Eulerian polynomials for d =  3.

The following lemma is due to [5]. We elaborate on the details of their argument 

in the proof below which gives a bijection between permutations a G Sd with k
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Figure 3.4: The permutation diagrams of S3 grouped by last letter reveal the (A , j )- 
Eulerian polynomials for d =  3.

descents and last letter d +  1 — j  and permutations <7flip G Sd with d — 1 — k descents 

and last letter j.  The result appears later in [10, Lemma 2.3], though in this case 

the coefficients of Aj(d, t) are not defined in terms of descent statistics on S'd-

Lemma 3.1 [5, Lemma 2.5]. For all d > \ ,  1 < j  <  d and k G Z,

aj(d, k) =  ad+i~j(d, d — 1 — k) , equivalently 

Aj(d,t) =  td~xAd+i-j  ^  .

Proof. Fix d >  1. Consider the bijection

ip :S d -+ S d

a aflip,
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where <rfip := d +  I — a, (for a diagram see Figure 3.5). Then 

i E Des(d) <£=> (Tj > ai+i

d 1 — <7i < d 1 — (Tj-f i

flip . flip 
a i <  ° i + l

•4=̂  i e  Asc (<Tflip) .

Therefore,

des(cr) =  k 4=^ asc (crflip) =  k des (<jflip) =  d — 1 — k .

Also observe ad — d +  I — j  if and only if a^p =  j .  We conclude

a,j(d, k) =  ad+i-j(d, d — 1 — k)
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1 2 3

<7rev =  3124

1 2  3 4

(jflip =  1342

Figure 3.5: Permutation diagrams of a , <rrev and <rflip respectively. 

This gives us the following:

1
=  t d 1 Y ^ a d + i - j (d , k ) t  k

k = 0
d -1  

=  ^ a  
k—0 
d -1

=  a rf+1_ j(r f , d  -  1 -  

k = 0 
d-1

fc=o

=  A,(<i, t). □

The following lemma gives a recursive formula for the (A, j)-Eulerian numbers 

and polynomials. The result is due to [5]. Once again, we provide an elaboration of 

their argument.
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Lemma 3.2 [5, Lemma 2.5].

j - i  d

(ij(d +  1, fc) =  £  ai(d, k — 1) -f- ^  ̂ai(d, k) , equivalently
i= i  i= j

j - 1 d

A,-(d +  1, £) =  t t) +  Ai(d, t ).
/= i  i= j

Proof. Fix d >  1, 1 < j  <  d and k G Z. Let cr G 5<f+i with /c descents and last letter 

d +  2 — j .  Furthermore, let //, =  ayo2.. .<Jd and K  =  [d +  1] \ {d +  2 — j } .  Then 

/i G Sk , the set of all permutations on the set K. We note that Sk  is isomorphic 

to S\K\ or Sd.

Case 1 : d E Des(cr).

d G Des(cr) <*=>• ad > a d+1 <^> ad > d + 2 - j  <=>• r f+ 3 - j  <  ad < d + l .

Because cr has A: descents and d G Des((r), // must have exactly A; — 1 descents. Then

| {cr G S'd+i : d G Des(cr) and ad =  d +  2 — j  and des(cr) =  A:} | —

| {// G 5#  : d +  3 — j  <  Hd < d +  1 and des(//) — A; — 1} | —

\{n' E Sd : d +  2  — j  <  /j,'d <  d and des(//) =  k — 1 }| =
j - 1
^ ~^ai(d,k -  1) .

i= i
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Case 2: d £ Des(cr).

d. ^ Des(a) \ (?d ^ &d+1 '' '' &d ^ d +  2 jf v—■!' j  •

Furthermore, des(<r) =  k and d ^ Des(cr) implies /.t has k descents. This implies

|{cr G Sd+i : d Des(cr) and =  d +  2  — j  and des(a) =  k — 1}| =  

\{n € Sk : 1 < fJ-d <  d +  1 — j  and des(//) =  A;}| =
d

ai(d , k ) .
1=3

We conclude
j - i  d

Oj{d +  1, k) =  ai{d, k -  1) +  ^  at(d, k) ,
J=i i=o
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from which it follows that

Aj(d  +  1, £) — ^  ̂a,j(d 4- 1, k)t^
k—0

d

-E
k=0  

d

= a*(d>k ~ ^ + Y1a i k ^k
k=0 l= j

j - 1 d
aM> fc -  i) + X] a/̂ >

/=i i=j
c< j - i d d

k= 0 /=1

y ^ai(d,k -  l)t
k = 0  
d - 1
^ a j ( d ,  A;)t*+

=o
d—1
J ~ 2ai(d,k)tk

E
/= i
i - i

E
1=1
j~

(E
/=1
j - 1  d

t j 2 M d , t ) + Y ; M d , t )
1=1 l=j

Lfc=0

d

+E
M

d

+E
M

d

+E
M

y  a/(rf, A:)£fck=0
I

^2 <ii(d, k)t 
k= 0 
d

Lfc=o

□

The following theorem is due to Jochemko. It can be seen as a reincarnation of 

the unimodality results for closed parallelepipeds by Schepers and Van Langenhoven 

in [10]. The proof is taken from [8].

Theorem 3.3 [8, Theorem 3.2.2]. For all d >  1, 1 <  jf <  (i, coefficients of
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Aj(d ,t) are unimodal. More specifically, in the case that d is even we have

a,j(d, 0) <  . . .  <  aj(d,(j  -  1) > . . .  >  aj(d, d -  1) if 1 <  j  <  f ,

a>j{d, 0) <  . . .  <  Oj(d,f) > . . .  >  o,j(d, d — 1) t / f  < j  <  d,

and if d >  3 is odd we have

a i(d ,0 )  < ... < oi(d, LfJ — 1) =  oi(d, LiJ) -  •••  ̂a i ( d , d - l , )

od(d ,0) <  . . .  <  ad(d, L|J) =  ad(d, LfJ + 1 )  >  ••• >  ad( d , d - 1),

aj(d, 0) < . . .  <  aj(d, LfJ) > . . .  >  aj(d ,d— 1) i f 2 < j < d — l.

Proof. When d — 1, the result is trivially true. For d > 2, we argue by induction 

on d. The case d — 2 is easily checked. For d =  3, we see from Figure 3.4 that the 

result holds.

Let d +  1 be even. We then distinguish two cases:

Case: 1 <  j  < . Then

j - 1 d + l - j  d
Aj(d +  1, t) =  t Aj(d, t) +  <) +  Ai(d,t)

/=1  l—j  l—d + 2 —j

by Lemma 3.2. The first and the third summand added give by Lemma 3.1 a 

palindromic polynomial with center of symmetry at  ̂ which, by induction, has 

unimodal coefficients with peaks at [ J J  and [ | J  + 1. The second summand has by



33

induction unimodal coefficients with peak at [ | J  =  —■ — 1.

Case: 4±L < j  <  d +  1 . Then

d + l - j  j - 1 d

A j ( d + l , t )  =  t M d , t ) +  t A i (d ,t )+  Y ^ A ( d , t ) .
1=1 l= d + 2 -j  l= j

The first and the third summand added give a palindromic polynomial with center 

of symmetry at which has unimodal coefficients with peaks at jJJ and [|J +  1. 

In this case, the coefficients of the second summand form a unimodal sequence with 

peak at [ | J  +  1 =

If d +  1 is odd, we distinguish again two cases:

Case: 1 < j  <  . By Lemma 3.2 we have

j - 1 d + l - j  d

Aj(d +  1, t) =  t Ai(d, t ) +  Ai(d,t) +  Ai(d,t ) .
1=1 l—j  l=d-\-2—j

The second summand is by induction and Lemma 3.1 a palindromic polynomial 

with unimodal coefficients and peaks at | — 1 and |. The coefficients of the first 

and third summand are unimodal with peak at | =  [^jrj •

Case: < j  <  d +  1. We have

d + l—j  j —1 d

Aj(d-\-l,t) — t ^  ̂ Ai(d, t) + 1  ^   ̂ Ai{d, t) +  ^  ̂Aj(d, t ).
1—1 l=d.-\~2—j  l—j

As in the previous case, the coefficients of the summand in the middle are unimodal
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and palindromic, this time with peaks at | and | +  1. The coefficients of the first 

and third summand form again a unimodal sequence with peak at | . □

Theorem 3.3 proves that the coefficients of the (A,  ̂ -Eulerian polynomials are 

unimodal and specifies the peak(s). From the proof of Proposition 2.17 in [10], we 

also know that the coefficients of these polynomials are alternatingly increasing for 

sufficiently large j .  We formally record this result and provide a proof, an extension 

of the proof of Theorem 3.3, below.

Lemma 3.4. For all d >  0 and [^ r j  < j  <  d +  1, the coefficients of Aj(d +  1 ,t) 

are alternatingly increasing.

Proof. Fix d > 0 and [ ^ J  < j  < d +  1. Let

d + l - j  d
b(t ) =  t t) +  J ~ ^ M d ,t )

i= i  i= j

and
i - i

CW=
l = d + 2 —j

Then by Lemma 3.2

Aj(d +  1, t) =  b(t) +  t c(t) and aj(d +  1, k) =  bk +  C k - i ,

where bt and c, are the coefficient of t, 1 in b(t) and c(t) respectively, and c_i := 0.

We wish to show that the coefficients of Aj(d+  1, t.) are alternatingly increasing (for
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our given values of j) .  Equivalently, we will show that

dj(d+  1, k) <  a,j(d +  1, d — k) for 0 <  k <  [|J , (3.3)

and

a,j(d+ l ,d  — k) < a,j(d +  1, k +  1) for 0 < k <  [ ^ J  • (3.4)

By Lemma 3.1 and Lemma 3.3 we know b(t) is symmetric and unimodal with 

peak(s) of uniinodality in agreement with center of symmetry at and c(t) is 

symmetric and unimodal with peak(s) of unimodality in agreement with center of 

symmetry at

Fix (J < A; < [|J. Then by the symmetry and unimodality of b(t) and c(t), 

aj(d +  1, k) =  bk +  Ck-\ =  bd-k +  Cd-k < bj-k +  ('d-k-i =  cij(d +  1, d — k ) .

This establishes (3.3).

Now fix ( ) < £ ; <  [ ^ J .  Then

aj ( d + l , d  — k) — bd-k +  Cd-k-1 =  bk +  Ck <  bk+i +  Ck =  aj(d +  1, k +  1) ,

also by the symmetry and unimodality of b(t) and c(t). This establishes (3.4). We 

conclude that Aj(d +  1, i) is alternatingly increasing for J < j  <  d +  1. □
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' ~9
/  I 

I
<>->

I - i?
> I' J / /o- - —o i o- - —6  i

f f  p
Cl Cl

Figure 3.6: Half-open unit cubes Cf  for j  =  0 ,1,2,3.

For j  £ {0 , . . .  ,d} we define the half-open unit cube

C f  : =  [0, l ]d \ { x d -  1, =  1 , . . . ,  =  1} .

The subscript j  indicates the number of facets removed from Cd to obtain Cf. We 

note that for j  >  0, the intersection of the removed facets of C (] is non-empty.

We define the ^-descent set DeSj(fr) C { 1, . . . ,  d} of a permutation a G S,j by

Des7(a) :=
Des(cr) U {d}  if d +  1 — j  <  <Jd < d ,

Des(cr) otherwise.

Further, we define the //-descent number des7- (a) to be the cardinality of the 

j-descent set.

We can now describe the (A  jj-Eulerian numbers in terms of j-descents, as the 

following lemma shows us. The result is due to Jochemko and appears in [8].
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Lemma 3.5 [8, Lemma 3.3.1]. Let a G Sd. Then for all 0 <  j  <  d and 0 < k < d

|{(T G Sd : desj(<r) =  k} \ =  aj+1(d +  1, k ) .

Proof Fix 0 < j  <  d and 0 < k < d. Consider o  G Sd with deSj(a) =  k. By 

definition

{des(cr) +  1 if d +  1 — j  <  <Jd < d ,

des(cr) otherwise.

If d +  1 — j  <  ad < d, then des?(a) =  k implies that des(cr) =  A: — 1. If 

1 < ad <  d, — j ,  then desj(<r) =  k implies that des(a) =  k. So the number of 

permutations in Sd with j-descent number k is equal to the number of permutations 

in Sd with descent number A; — 1 and last letter between d +  1 — j  and d (inclusive) 

plus the number of permutations in Sd with descent number k and last letter strictly 

less than d +  1 — j . Equivalently,

i d
|{<7 G Sd: desj(a) =  A;}| =  y ^  at(d, k -  1) +  ^  at(d, k)

/=1 l~j~fl

— ®j+i{d +  1, k) ,

where the last equality follows from Lemma 3.2. □

Remark. Lemma 3.5 also holds as a result of the proof of equations (4.3) and (4.4). 

The bijection we use in the proof is a modified version of that used by Jochemko
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in [8].

The following result comes from [8]; it is a generalization of property (1) of 

Lemma 2.5 in [10]. We provide an altered version of Jochemko’s proof below.

Proposition 3.6 [8, Theorem 3.3.2]. Let d >  1 and 0 < j  <  d. Then

Ehr ( C d t ) =v j > / n _ f \ d +i •

Proof. Let d >  1, 0 <  j  <  d and a € Sd- Define the half-open unimodular simplex

{
x e  C f  : xai <  x C 2 <  ■ • • <  xad 

with xai < x a i + 1  when i G Des(cr)

This gives us the disjoint union,

cf= U ^1 ■
creSd
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We also have the following equivalent definitions

x G R ' : 0 < xCl < x a .2 <  ■ • • < xCd <  1

with xffi < x a i + 1  when i G Des(cr) 

and Xcrd < 1 when d +  I — j  <  a(i < d

x G R d : 0 < xffl < x C 2 <  ■ • • <  x„d <  1

with xai < x 0 i + 1  when i G DeSj(cr) 

and xCd < 1 when d G Desj(cr)

Each strict inequality corresponds bijectively to a missing facet in the simplex. We 

see that has des(cr) +  1 missing facets when d + 1 — j  < a,i and des(cr) missing 

facets otherwise. Therefore, the half-open unimodular simplex A^J has exactly 

desj(cr) missing facets. Together with the disjoint union, this implies

Ehr (Cf . t )  =  £  Ehr (A^. t )  
o-esd

= E f e V ( ^ V )
(1 — t ) d + 1

Efdesj(a)
_ _  <7eSd _______________

(1 — t ) d + 1

_  Ylk=o %+i +  h.
(1 — t ) d + 1  

Aj+i(d +  1, t)



40

where the second to last inequality follows from Lemma 3.5. □

This proposition tells us that the (5-polynomial for the half-open unit cube Cf  

is the (A, jf)-Eulerian polynomial Aj+i(d +  1,£). Together with Theorem 3.3 and 

Lemma 3.4, we see that the ^-polynomial for Cf  is unimodal for all 0 <  j  <  d and 

alternatingly increasing for <  j  <  d.

3.3 Half-Open Parallelepipeds

Let Vi , . . . ,  be linearly independent vectors in 7Ld and let J C [d]. Then we define 

respectively the closed parallelepiped 0(J),  the standard half-open paral

lelepiped II(J), and the open parallelepiped □(</) generated by J [10]:

0(J) :=\Y1 Xivi '■ 0 -  -  1
I j €  J

n ( j ) • ^  <  i
I j e J

D ( J ) := | E Ai v ^ 0 < A ,  < l |  .

Let Fi be the facet of 0 ( J) generated by J \ {?'} and let F/ be the translate of Ft in 

0(J):

F , - - 0 ( J \ { i } )  and F; := v, +  F ,.
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0{2}([2]) 0{i ,2}([2]) =  n([2])

Figure 3.7: A closed 2-dimensional parallelepiped and its half-open variants. 

Note that

n( J) =  0(J) \ u  f :
i e J

and

□ ( , / ) = o ( j )  \ u  w  u .

Let I  C J C [d]. Then we define

i e J

*i(J ) ■■= { e  A jVj : 0 < Aj < 1 with A j < 1 for all j  6 /  j

to be the half-open parallelepiped generated by J with omitted facets F for all 

i £ I. In Figure 3.7 we see a closed 2-dimensional parallelepiped and its half-open 

variants.

The lemma below is a modification of a well-known result which states that a
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polytope is the disjoint union of the relative interiors of its faces. That is,

v =  □  r .
T  C V

The lemma also appears in a more general form in [8]. The stronger result seen 

there applies more generally to Z d-valuations1.

Lemma 3.7 [8, Lemma 3.4.3]. Let J C [d]. Then

# ( n ( J ) n z ' ) =  J ]  # ( □ ( / ) n z J) .
0 C J 'C J

Lemma 3.8 below is a generalization of [10, Lemma 2.1], The original result is for 

closed (lattice) parallelepipeds 0 ( [d]) =  ([d\). Jochemko extends it to half-open

(lattice) parallepipeds in [8, Lemma 3.4.1], In fact, she proves a stronger statement 

which applies to arbitrary Z d-valuations. We follow the proof from [10] for closed 

parallelepipeds, adjusting as necessary for the half-open condition.

Lemma 3.8 [10, Lemma 2.1]. Let I  C [d]. Then

#  (n07 (M) nzd)= J2 n}'n * (n (J/) n Z") •
J ' :ICJ 'C[d\

1A Zd-valuation is a map ip from the set of all lattice polytopes in Rd to an abelian group such 
that ip (0) =  0 and ip (V D Q) — ip (V) +  <p (Q) -  ip (V H Q) for all lattice polytopes V, Q such that 
V  U Q is also a lattice polytope; additionally, a Zd-valuation <p is invariant under translation by 
vectors in Zd, so ip (V +  v) =  <p (V) for all lattice polytopes V  and all v £ II1 [8].
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Proof. Let I  C [d], □ (nJ) := n □( J), and k' := \{[d] \ ( , / U 7)}|. Then

#  (vA j ([<*]) n z d) =  5 3  2fc'#  ( d m  n z d)
JC[d\

=  E  E  # ( D M )  n z “ )
JC[d] .yc./'c[rf] and 7CJ'

5 3  # (D (n J ) n z rf)
y,J'C[d]: JC J' and JCJ'

=  J ]  #  (n (nJ ') n z d)
J'C[d]:/CJ'

=  5 3  n|J,|# ( n ( j ' ) n z d) .
J': /C J '

The second to last equality follows from Lemma 3.7. The last equality follows 

because n ll ( , / /) is covered by nd,,n(n(J')> translates of II(J') and the dimension of 

n (J ') is precisely the order of the generating set J'. □

Corollary 3.9 [8, Corollary 3.4.2]. Let d >  1, 0 <  j  <  d and n G Z >0. Then

ehr ( C f , n ) =  5 3  n Â >

where we define [0] := 0.

Proof. Fix d >  1 and 0 <  j  <  d. Let n G Z>o and v* =  e, for all i G [ri]. Then C d
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is congruent to %]([«!])• By Lemma 3.8

ehr (C f , n) =  n|J| #  (II(J) fl Zd) =  ^  nJJ\
mJQldI b']cjc[d]

where the last equality holds because the origin is the only lattice point in the 

half-open unit cube n (J ). □

The following theorem and corollary are due to [8], as are their proofs. The 

theorem is a generalization of [10, Proposition 2.2].

Theorem 3.10 [8, Theorem 3.4.4]. Let I  C [d]. Then the Ehrhart series of the 

half-open parallelepiped $i{[d]) is

Ehr (♦ ,  m  , t) -  .
(1 1 )
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Proof.

Ehr (<►/ ([d]), t) =  1 +  ^  ehr (<)/ ([d]), n) tn by definition
n> 1

=  tn nlJ] #  (n ( J) n Zd) by Lemma 3.8
n > 0 I C J

=  E (" E " ' " E  #  (o (K ) fl Z d) by Lemma 3.7
n > 0  I C J  K C J

=  £ # ( □ ( * )  n Z ^ f  £  n'Jl
KC[d] n> 0 ( l U K ) C J

=  £  # (□ (« ■ )  n Z ^ I " ehr ( q U , , n )  by Corollary 3.9
/S'C[d] n>0

_ X^A'c[d] #  (D(-^0 n ^d) A\iuK\+i(d +  1 ,t)
(1 -  ty + i

by Proposition 3.6.

The third to last equality holds because for a fixed subset K  and positive integer n, 

the number of times that #  (lH(/v) fl Z d) is counted in both expressions is equal to 

the number of supersets J of I  that also contain K. □

Corollary 3.11 [8, Corollary 3.4.5]. The 5-polynomial of the d-dimensional half

open parallelepiped ^/([d]) is unimodal with peak a,t ~ if d is even and with peak at 

or — ■ if d is odd.

Proof. Prom Theorem 3.10 we have

6 (h ([d ]) ,t )=  Y ,  #  (n (K ) n Zd) A\IUK]+i(d +  1, t)
KC[d]
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Furthermore #  (□(A ') f lZ d) > 0 for all K  C [d]. By Theorem 3.3, the coefficients 

of A\njK\+i(d +  1, t) form a unimodal sequence with peak at [“ -J =  | if d is even, 

and peak at — 1 — or — if d is odd. The same is true for the coefficients 

of any nonnegative linear combination of the A\njK\+i(d +  1, t) where K  C [d], □

Theorem 3.10 also implies the unimodality of the 8 -vector for lattice zonotopes. 

This is recorded formally in the following corollary, a weaker version of Jochemko’s 

result from [8].

C orollary 3.12 [8, Theorem 3.5.4]. The 8 -polynomial of a d-dimensional zonotope 

is unimodal with peak at | if d is even and with peak at ^  or if d is odd.

In order to prove this result we require a corollary to Theorem 2.1. The corollary 

is due to Jochemko and can be found in [8]. Her proof relies on the Beneath and 

Beyond construction of Koppe and Verdoolaege [9] (stated here in terms of visible 

faces) which gives rise to disjoint half-open decompositions of polytopes for an ap

propriately chosen reference point p € Rd. We motivate and outline Jochemko’s 

proof below.

C orollary 3.13 [8, Corollary 3.5.3]. Every d-zonotope admits a. disjoint decompo

sition into half-open d-parallelepipeds of the $-type.

We say a face T  of a polytope V  is visible2 from p e if

[p, x] n P =  {x}

2 Alternatively, we say point p 6 R'1 is beyond T.



Figure 3.8: (a) All faces of V  that are visible from pi ^ V  appear in blue; (b) The 
two facets of V  that are not visible from pi appear in red; (c) No faces of V  are 
visible from p2 £ P°.

for all x e 7 .  In part (a) of Figure 3.8, all faces of the 2-parallelepiped V  that are 

visible from pi ^ V  appear in blue. We note that identifying all visible facets of 

V  is sufficient in identifying all visible faces of V. This is true in general, provided 

the reference point lies on no facet-defining hyperplane of the polytope [3]. In part 

(b), the facets of V  that are not visible from pi appear in red. Observe that if facet 

T  is visible from pi, then facet J7', the translate of T  in V, is not visible from pi. 

This also holds in general [3]. In part (c), we see that no faces of V  are visible from 

P2 € V ° .

From a subdivision into parallelepipeds of a d-zonotope Z  C Rd we obtain 

the dissection

£  =  Oi U 0 2 U • • • u 0 , ,

(a) (b) (c)
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where Oi, O21 • • • > Os are the maximal cells of This dissection, in utilizing our no

tion of visible faces from a fixed reference point, gives rise to a disjoint decomposition 

of Z  into half-open variants of the Oi-

Fix p € Z° such that p lies on no facet-defining hyperplane of any of the maximal 

cells in . For each i <E [s], the half-open (/-parallelepiped 0* is obtained by removing 

those faces of Oi that are visible from p:

o':=o,\ |J t .
T  is visible from p

By construction, no two of the removed facets in 0* are translates of one another. 

Thus the intersection of the removed facets is empty and we rewrite (}[ as <̂ , as Of is 

indeed a half-open parallelepiped of the 0-type. This gives us the following disjoint 

decomposition of (/-zonotope Z  into (/-parallelepipeds of the 0-type:

Z  =  <>! U <>2 u • • • u 0S .

See Figure 3.9 for an example in dimension 2 of how a subdivision into paral

lelepipeds and a reference point p give rise to such a decomposition.

Proof of Corollary 3.12. Let Z  be a (/-dimensional zonotope. By Corollary 3.13 

there exists a disjoint decomposition of Z  into half-open (/-dimensional parallelepipeds
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Figure 3.9: A 2-zonotope Z , a subdivision of Z  into parallelepipeds, and a disjoint 
decomposition of Z  into half-open 2-parallelepipeds.

of the <Mype, say

i€[s]

which implies

6{Z,t) = Y , S M -
*e[s]

By Corollary 3.11, we know is unimodal for all i E [s] with peak depending

on the dimension of <>,. But all have the same dimension, so all have the

same peak. It follows that any sum of the ^-polynomials is unimodal with peak 

equal to that of each of the <5(^,£), and so S(Z,t) is unimodal with peak at | if d 

is even and with peak at or if d is odd. □
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Chapter 4 

Half-Open ±  1-Cubes and the 

(B , £)-Eulerian Numbers

4.1 Signed Permutation Descent Statistics

A signed permutation on [d] is a pair (tt, e) with 7r € S,i and e e  To

each letter 7T; in the permutation word 7r we assign the sign of e,;, the ith entry of 

e. For a given d, the set of signed permutations is denoted by Bj and has 2d ■ d\ 

elements. We will use one-line notation to denote signed permutation words with the 

following convention: those letters associated with a negative sign will be followed 

by an accent mark. So for d. =  5, n =  42135 and e =  (—1, —1,1, —1,1) we write 

(tt, e) =  4'2'13'5.

Let ttq := 0 and eo := 1 for all (7r, e) E Brj and all d >  1. Then i € [d — 1] U {0 } is 

a (natural) descent of (7r,e) £ B(J if e;7Tj > u +i7ri+i. So 0 and 3 are the descents
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of signed permutation word 4/2'13'5. We easily observe the descents, seen here in 

red, from the two-line notation for 4'2'13,5:

0 1 2 3 4 5

0 - 4 - 2 1 - 3 5

We define the (natural) descent set and the (natural) descent number of

(tt, e) G Bd, respectively, as follows:

NatDes(7r, e) :=  {i G [d — 1] U {0 } : et7rt > ei+iTTi+i}  and 

natdes(7r, e) := |NatDes(7r, e)| .

Notice that with 0 as a possible descent we have 0 < natdes(7r, e) <  d for all 

( tt, e) G Bd- This differs from the descent statistic des(cr) for permutations in Sd 

where 0 <  des(cr) <  d — 1 for all a G Sd-

The number of signed permutations on [d] with exactly k descents is a descent 

statistic on Bd. We call these descent statistics the type-5 Eulerian numbers 

and write

b(d, k ) := | { (7r, e) G Bd : natdes(7r, e) =  k} \.

The type-5 Eulerian polynomial is

d

B(d, t) : = J 2 b(d, k)tk .
k= 0
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Remark. The descent statistic natdes on signed permutations in B,i agrees with 

the descent statistic des on permutations in S(i when we fix the sign vector e =  

(1 ,1 ,. . . ,1 ) .

Consider the d-dimensional ± 1 —cube,

[—1, l]d {x  G : — 1 < Xi <  1 for all i }  ,

and the half-open unimodular simplex indexed by the signed permutation (tt, e) G 

Bd,
x G [-1, l]d : 0 < eix7[l < ■ ■ < edx nd <  1 

with eiXni < ei+ix n i + 1  when i G NatDes(7r, e)

The definitions imply the following disjoint union

1 - 1 . 1 ] ' =  □  A ? „ > ,
(Tr,e)eBd

see [1]. We also observe A^. has k missing facets if and only if natdes (tt, f) =  k.
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Therefore,

Ehr([-1, !]•*,«)= J ]  E h r(A f„,,4 )
(n,e)€Bd

2-^1 (1 _  f \ d + 1

(l — t)d+1 
B(d, t)

(1 -  t ) d + l '

In this way we see that the Ehrhart 5-polynomial for [— 1, l]d is the type-5 

Eulerian polynomial B(d,t) [4, Theorem 3.4]; that is,

The coefficient of tk counts the half-open unimodular simplices with exactly k facets 

removed in the B 4 -induced decomposition of [—1, l]d, or equivalently, the signed 

permutations in B(i with exactly k descents. See Figure 4.1 for this decomposition 

with d =  2.

We wish to show that B(d, t) is alternatingly increasing using the interplay of 

the geometry provided by the ±  1-cube and the combinatorics provided by relevant 

permutation descent statistics. To do this we introduce the unit cell indexed by

(4.1)



A]/2' A 12'

Figure 4.1: Decomposition of [—1, l]2 into disjoint half-open unimodular simplices 
indexed by signed permutations in B2.

/ c [ d ] ,

U'j := {x  G [—1, l]d : X{ > 0 for all i G /  and xt < 0 for all i / }  .

Notice that Uf is a half-open unit d-cube with d — |/| facets removed and that the 

intersection of the removed facets is non-empty, so no two of the removed facets are 

translates of one other. Therefore, Uf is congruent to Cf where j  =  d — |/|. We 

write Uf =  Cf. There are 2 d unit cells indexed by the 2 d subsets of [d\, exactly (d) 

of which are congruent to Cf.

The union of the unit cells is the ri-dimensional ±l-cube. Furthermore, the union 

is disjoint. That is,

[ - i , i ] “ =  LI u f-
/Cfd]



Figure 4.2: Decomposition of [—1, l]2 into unit cells indexed by subsets of {1 ,2 }.

See Figure 4.2 for this decomposition with d =  2. Therefore,

Ehr ( [ -1 .1 “] , f )  =  £ EhrW > ( )
/ c[d]

=  £ E h r ( C t |;|, ( )
JC[d]

v  < (c i - in .» )

4  d - o "
z U ( D s ( c f , t )

(1 — )̂d+1 

(1 — £)d+1

where the last equality follows from Proposition 3.6. From this we arrive at the 

following theorem and proof for the corollary.
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Theorem  4.1.

B(d, t) =  ^  A j+1(<i +  1, t) and
j=o

b(d,k) =  ^  ( d \̂aj+i ( d + l ,k ) .
j=o

C orollary 4.2 [4, Theorem 2.4]. The type-B Eulerian numbers are symmetric and 

unimodal. In particular, they are alternatingly increasing.

Proof. In order to show that the coefficients of B(d,t) are alternatingly increasing, 

we will consider B(d,t), as in Theorem 4.1, as a positive linear combination of 

the {A, j)-Eulerian polynomials. We will show that this linear combination is both 

symmetric and unimodal, thus implying that the center of symmetry is in agreement 

with the peak(s) of unimodality. We will also see that the peaks are in the middle, 

further implying that the coefficients of B(d,t) are alternatingly increasing. We 

proceed by cases.

Case 1: d is odd .

We rearrange B(d, t) into a linear combination of polynomial pairs:

rf+i 1

=  X  (  .'j [Aj+i(d +  1, t) +  Ad+i~j(d +  1, £)] . (4.2)
j=o



From Lemma 3.1 we know the polynomial A j+i(d+1, t)+A d+i-j(d+l, t) is symmetric

with center of symmetry at | =  [^jrj • Furthermore, from Theorem 3.3 we know

that for all d >  1 odd, the polynomial Aj+\{d +  l ,t )  is unimodal with peak at

1 if 1 < j  +  1 < 4±I <=> 0 < j  <  ^  -  1,

if ^  < j  +  1 < d +  1 « = »  ^  <  j  <  d .

Therefore, the first polynomial in a pair is unimodal with peak at — 1 and the 

second polynomial in a pair is unimodal with peak at — k After adding the two 

polynomials in a pair, the coefficient of t ^ ~ l will be equal to the coefficient of 

and the resulting sum will be unimodal with double peak at — 1 and

The coefficient ( )̂ is nonnegative for all d and j  and thus will not affect the 

symmetry or the unimodality of the sum of each polynomial pair. It follows that 

the entire sum in (4.2) is symmetric and unimodal with centers of symmetry in 

agreement with the peaks of unimodality. Because the peaks are in the middle, the 

entire sum is alternatingly increasing when d is odd.

Case 2: d is even.

Once again we rearrange B (d ,t):
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As before, the sum of each polynomial pair is symmetric with center of symmetry at 

By Theorem 3.3 we know that Aj+i(d + 1 ,t) is unimodal with peak at f

for all values of j  with d >  2 and even. By the same reasoning, the polynomial 

A±+l(d + l , t )  is also symmetric and unimodal with center of symmetry and peak in 

agreement at The nonnegative coefficient (j) will not affect the symmetry or the 

unimodality of A±+1{d +  1, t) or of the sum of the polynomial pairs. Therefore, the 

entire sum is symmetric and unimodal with center of symmetry equal to the peak 

of unimodality. Because the peak is in the middle we conclude that the entire sum 

is alternatingly increasing. □

Remark. Corollary 4.2 can also be deduced from Proposition 2.17 in [10] and equa

tion (4.1). The proposition states that the 5-vector for a lattice parallelepiped with 

at least one interior point is alternatingly increasing. Our [//-induced decomposi

tion of the ±  1-cube provides a geometric proof of the result for this specific class of 

parallelepipeds.

4.2 Half-Open ±  1-Cubes

We begin this section by introducing the (B , £)-Eulerian numbers, a refinement of 

the type-/? Eulerian numbers defined by

be(d, k) := { (7r, e) G B d  : — d +  1 — t  and natdes(7r, e) =  k} ,
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[-1,118 [-1,1]? [-1,131

Figure 4.3: Half-open ±l-eubes [—1 ,1]| for £ =  0,1, 2, respectively, 

where 1 < £ < d. We further introduce the (B , £)-Eulerian polynom ial,

d

Be(d,t) =  y ^be(d,k)tk .
k=o

What else do the (B , £)-Eulerian numbers count? To answer this question we 

introduce the half-open ±  1-cube [—1 ,1]|, where d >  1 and 0 < £ <  d. This object. 

is the ±  1-cube with £ non-translate facets removed:

[-1,1];?: =  [—1, l]d \ {x d =  1, Xd—\ =  l , . . . , x d+ i-e =  1}

=  {x  G : — 1 <  Xi <  1 with xt < 1 when d +  1 — £ < i <  d] .

See Figure 4.3. Additionally we define the (natural) ^-descent set, NatDes (̂-7r, e) C
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{ 0 ,1 , . . . , d}, of signed permutation (7r, e) G Bd by

NatDeSf(7r, e)
NatDes(7r, e) U {d } if d +  1 — £ <  e^d <  d ,

NatDes(7r, e) otherwise.

The cardinality of this set is the (natural) ^-descent number of (tt, e), denoted by

natdes^Tr, e) := |NatDes (̂7r, e)| .

We observe that

natdes^(7r, e) =
natdes(7r, e) +  1 if d +  1 — t  <  e^d  <  d , 

natdes(7r, e) otherwise.

As with [—1, l]d, we can decompose [—1 ,l]de into half-open unimodular simplices 

indexed by signed permutations in Bd. However, we must first adjust our definition 

of the simplices to account for the changes in the ±l-cube. Let

A d,£ —
(*,«) —

x e [_ 1 > !]« : 0 ^ elx*i <  • • • < tdX-Kd <  1 

with 6 iXni < Ci+ix n i + 1  when i € NatDes(7r, e)
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These simplices are disjoint, and their union is [—1,1]$:

[-i.i]?= U <«)■
(?r,e)eBd

Unlike the half-open simplices  ̂we introduced earlier, the number of missing 

facets of A ^ e) is not always enumerated by the number of descents of the indexing 

signed permutation. The number of missing facets of a simplex that lies on

a removed facet of [—1,1]$ is one more than its descent number. This follows by 

construction: A ^  > lies on the hyperplane {x; =  1} if and only if the last signed 

letter of the permutation is +i.

The removed facets of [—1,1]$ are defined by supporting liyperplanes {xd+i-t =  

1 } , . . . ,  { xa = 1 } .  Therefore, the simplex A | ^  has natdes(7r, e) +  1 open facets if 

and only if e^d E {d +  I — ,d}. It follows that the number of open facets of

A ^ £) is natdes (̂7r, e). The ^-descent set of (7r, e) also determines the location of the 

strict inequalities in the construction of A ^ ê and thus the location of the open 

facets in the simplex itself. We see this in the following equivalent definition:

A f  , =  <(
(7r,e)

x E : 0 < <  • • • <  e^x^d <  1

with f.iXnl < ei+ixni+i when i E NatDes^(7r, e) 

and c(iXVd < 1 when d E NatDes (̂-7r, e)

.
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Consider the following map:

<p:Bd -> {(71-, e) e Bd+i : ed+lnd+l =  d +  1 -  £}

/
TTi if 0 <  7Tj <  d — £,

\

7r i (->• < 7Tj +  1 if d +  1 — £ < ni < d,

V
d -\-1 — £

V

if i =  d +  1,
/

6 I  ̂ (f l ) •• •) Cd,!) •

The map if defines a bijection between signed permutations of order d and signed 

permutations of order d+ 1 with last signed letter ed+ind+i =  d+ 1 — £. Furthermore,

the descent number of the image is equal to the ^-descent number of the pre-image.

That is,

natdes (<p(7r, e)) =  natdes (̂7r, e ) . (4.3)

In fact,

NatDeSf (7r, e) =  NatDes e)) . (4.4)

We prove these equalities in the following argument.

Let (n, e) £ Bd and i £ { 0 ,1 , . . . ,  d — 1}.

Case 1. Suppose the signs of the two adjacent signed letters r* and ei+iKi+i 

are different. Then the inequality relation -< between and ei+17Tj+i is determined
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by the signs of e* and ei+x. These signs are preserved under the map ip. So 

ejTTj -< ej+i7T.;+i </p(ej7Ti) -< 77(614.1̂ 4-1) .

Case 2. Suppose the signs of the two adjacent signed letters e,7r» and ^417^41 

are the same. Then the inequality relation between e;7Tj and e;+i7Tj+i is preserved 

if and only if the inequality relation between 7Tj and iri+i is. In this case we let -< 

represent the inequality relation between 7r, and 7Tj+i.

• Let 7Tj, 7Tj4i <  d +  1 — £  Then <p(iTi) =  7̂  and <̂ (7̂ 41) =  7Ti+i, so

7Ti -C 7Tj+i «=*> yj(7Ti) -< (^(^41) •

• Let 7Tj, 7r,4 i >  d +  1 — £. Then

7r< -< 7Ti+i •«=>• ip(-Ki) =  7T* +  1 ^ 7Ti+i +  1 =  <y?(7Tj4i) .

• Let ni < d +  1 — £ and 7r,4i >  d +  1 — £. Then 7r* < 7ri+i and

if(TTi) =  TTi < 7Ti+1 < 7fi+l +  1 =  ^(^i+l) •
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• Let 7Tj >  d +  1 — t  and 7rI+J < d +  1 — L Then 7r* > 7Tj+1 and

^(7T i) =  7Tj +  1 >  -Ki >  TTj+i =  ¥?(7Ti + i )  .

We see that the inequality relation -< between 7t, and 7r;+i is preserved in all 

instances and so is the inequality relation between and e;+i7Tj+i. From Cases 1 

and 2 we conclude that for all i G { 0 ,1 , . . . ,  d — 1}

i G NatDes(7r, e) •<=>• i G NatDes(y?(7r, e )) .

Now consider the dth signed letter ed̂ d of (7T, e ) G B(j. Suppose =  1 and 

d +  1 — t <  7rf/ <  d. This implies d G NatDes^(7r, e). The (Ith signed letter of (f(n, e) 

is

<P(Wd) =  Q(7Td +  1) =  7Td +  1.

The (d+  l ) st signed letter of ip(n, e) is d+ 1 — £ by definition. We assumed d+ 1 — i  <  

TTd < d, so d +  1 — i < TTd +  1. This implies c? G NatDes(<^(7r, e)).

Now suppose ed =  1 and d. + I — £ < < d do not both hold. This implies

d NatDeSf(7r, e). We consider two cases.

a) Suppose ed =  — 1. Then

<p(edTrd) =  -<pM  <  0 < d +  1 -  i .
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From this we see that d £ NatDes(y>(7r, e)).

b) Suppose f,d =  l and Kd < d +  1 — I . It follows that ip(edFd) =  ^d- The (d +  l ) st

signed letter of <p(7r, e) is d +  1 — £, so d £ NatDes(9?(7r, e)).

All implications are bi-directional. Therefore,

d £ NatDes£(7r, e) <=>• d 6 NatDes(^(7r, e ) ) .

Together with Cases 1 and 2 we now conclude that i is an ^-descent of (7r, e) if

and only if i is a descent of r, e). Therefore,

NatDes<>(7r, e) =  NatDes e)) and 

natdes (̂7r, e) =  natdes e)) .

This gives us the following lemma.

Lem m a 4.3. Let d >  1 and 0 < £ < d. Then

be+i(d +  1, k) =  |{(7r, e) G Bd : natdesf (7r, e) =  k}\ .

Theorem  4.4.

Ehr ( [ -1 ,  I g . t )

Proof. We saw above that the number of open facets of is the ^-descent number
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of (tt, e). We also have the disjoint decomposition

U A?«>-
(ir,e)eBd

Therefore,

E h r  ( [ - 1 , 1 ] - * )  =  £  E h r ( A « , , ( )
(n , e ) e B d

^  (1-*)«*+!
(7r,e)€Bd V '

^.natdes^(7r,e)

(l — /)d+1

_ _  Z)fc=Q^+l(^ +  1)
(1 -  t)d+!

_  +  M ) n
(1 -  t ) ^ 1 '

Theorem  4.5. For d >  1 and 0  <  I <  d, the coefficients of 5 ([— 1,1]$, i) are 

alternatingly increasing.

In order to prove Theorem 4.5, we first introduce another disjoint decompo

sition of [—1,1]^. From the resulting geometry we obtain a characterization for 

S ([—1, l]f, t) as a linear combination of (A, j)-Eulerian polynomials. We then use 

the symmetric, unimodal and recursive properties of the nonnegative integral coef

ficients of the linear combination to prove that the coefficients of 5 ([—1,1 ]<?,£) are
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alternatingly increasing.

Consider the [//-induced decomposition of [—1, l\d into half-open unit cells:

i-i,i]?= [J u f ,
rm

where

U fe : =  { x £  [—1, l]d( : Xi >  0 if i G /  and Xi <  0 if i / }  

x  G Rd : 0 < Xi <  1 for all i G /  with 

x̂  < 1  when d +  1  — I < i <  d, > .

and — 1 <  Xi < 0 for all i <£ I

By construction, the decomposition is disjoint so the 5-polynomial of the half- 

open ±  1-cube is equal to the sum of the 5-polynomials of the half-open unit cells. 

Furthermore, Uf'e is congruent to Cf, where

j  =  \[d] \ I\ +  \ {i E I : d +  1  — £ <  i <  d}\ .

Let I  C [d], then the unit cell U fe has |[d] \ I\ =  d — |/| missing facets before the 

£ facets of the ±l-cube are removed. This corresponds to the strict inequalities at 

0 in the definition of U j .  After the £ facets of the ±l-cube are removed, {x (i =  

1 } , . . . ,  {xd+i-e =  1}, we see strict inequalities at 1 for all with i G /  and d -)-
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1 — £ < i <  d. These correspond to one missing facet each, giving us a total of 

j  =  |[d] \ I\ +  \{i e  I : d +  1  -  £ < i <  d,} \ missing facets.

It follows that the 5-polynomial of U f  is the 5-polynomial of C f and

i ( [ - i , i U , « )  =  E < ( t ^ ' , « )  = E cf -H C j- t )  =  - V i ( < i + U ) ,
IC[d\ j —0 j =o

where

c f  :=  | {/ C [d] : Uf'e * C f }\  .

By Lemma 3.4 we know that the coefficients of A 7+1(d +  l,t )  are alternatingly 

increasing for all j  >  Additionally, from the proof of Corollary 4.2 we know

that for all 0 < j  <  d, the sum of the polynomial pair Aj+1(d + 1 , t) , A d -j+ i(d + l,t)  

is alternatingly increasing.

In order to prove that 5 ([—1,1 ]e,t) is alternatingly increasing we will show that 

for each I  C  [d] with U f  =  C'j and j  <  [^ rrj, there exists I' C [d] with U f  =

This will allow us to pair each (A,/)-polynomial where j  <  L̂ jr̂ J with a second 

polynomial such that the polynomial sum is alternatingly increasing. The index sets 

not paired in this process correspond to j-values greater than or equal to and

thus the associated (A, j)-polynomials are alternatingly increasing on their own. In 

this way, we will see that the sum of the (A, ^-polynomials, y ^ _ 0 c f  ■ A y+J (V/+1, t), 

is itself an alternatingly increasing polynomial.

It is important to note that we consider all (A, j)-polynomials A j+i(d +  l .t )  as
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degree-<i polynomials, although the coefficient of td may in fact be zero. Furthermore, 

we use the term “alternatingly increasing” in its strictest sense. That is, when we say 

that a degree-d polynomial is alternatingly increasing, we mean that the polynomial 

is alternatingly increasing in degree d (whether or not s < d, where s is the largest

index with a non-zero coefficient). Symbolically, if a0  +  a\t-\------- (- asts H b urjtd

is alternatingly increasing, then

«o <  < O] < • • • < as < • • • < .

For fixed d >  1 and fixed £ such that 0 < i  < d, let

(  d,( d j  d j \(c0 , cx , • • •, cd J

be called the C ^ -vector . From the definition of cd'e above, we see that the kth entry

of this vector is equal to the number of unit cells congruent to C d in the U/-induced

decomposition of [—1, \]d. For j  < 0 and j  > d, we define cd,e 0. This aligns with 

the combinatorial and geometric interpretations of cd,e. To get a sense of what these 

C d,e-vectors look like, see Table 4.1.

In our proof of Theorem 4.5 we will need the following lemma regarding the 

C d’e-ve ctor.

Lem m a 4.6. Let d > 1, j  G Z and 0 < £ < d. Then the C f 1 -vector is symmetric
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dJ
C0 C1 C2 c f

d,£
C4

d =  1

oII 1 1
d =  1 i  =  i 0 2

d =  2 £ =  0 1 2 1

II to 1 =  1 0 2 2
d =  2 II to 0 0 4

COII oII 1 3 3 1

sx II CO t =  l 0 2 4 2
d =  3 II to 0 0 4 4
d =  3 e  =  s 0 0 0 0 8

II e =  o 1 4 6 4 1
d =  4 e  =  i 0 2 6 6 2

II3̂ 1 =  2 0 0 4 8 4

a. II COII 0 0 0 8 8

II II 0 0 0 0 16

Table 4.1: The C j’e-vector for d =  1,2,3,4. 

and unimodal with center of symmetry at and peak(s) of unimodality at:

when d +  £ is even,

|_^J and |_^J + 1  when d +  £ is odd.

In particular, the center of symmetry is in agreement with the peak(s) of unimodality.

Proof. First we will prove that the Cj'e-vector is symmetric about by showing

a bijection between unit cells in [—1,1]^ congruent to C f and unit cells in [—1,1]^ 

congruent to C$+e_j. We will then use induction to prove that the Cj'e-vector is 

unimodal with peak(s) of unimodality in agreement with the center of symmetry. 

Fix d >  1 and £ such that 0 < £ < d. In order to prove symmetry of the C f (-
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vector we will show that Uf'( =  C f if and only if Uf'e =  Cfl+e__-, where I  =  [d] \ I.

Suppose the index set I C [d] is such that Uf'( =  Cf. We know j  =  \[d] \ /j  +  

\{i E I : d +  1 — £ < i <  d}\. Let F  :=  {i E I : d 1 — £ <  i <  d}. Then

j  =  d-\I\ +  \F\.

Now consider the index set /  =  [d] \ I. Notice that \I\ — d — |/|. Thus the unit 

cell U fe has

j  =  d-\I\ +  \ F \ = d -(d -\ I\ ) +  \F\ =  \I\ +  \F\

removed facets.

We note that F  and F  are disjoint because I  and I are disjoint. We further note 

that the union of F  and F  is the set of indices corresponding to all removed facets 

of [ - l , l ] f  So

F U F  =  {d +  l - £ , . . . , d - l , d }  = »  \F\ +  \F\=L
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Therefore,

j  =  d-\I\ +  \F\ 

- j  =  -d + \ I\ -\ F \  

d +  £ - j  =  \I\ +  (£-\F\) 

d +  £ - j  =  \I\ +  \F\,

from which it follows

j = d + £ - j  and Uj’e =  C%+e_j .

We conclude U fe =  C f if and only if This means c f e =  c ^ (_j

for all j  G Z. It further implies the -vector is symmetric about

j  +  (d +  £ -  j ) _  d +  £
2 2 '

We will prove the unimodality of the vector for all 0 <  £ <  d by induction 

on d. When d =  1, we have C j 'e-vectors (1,1) and (0,2) for £ =  0 and £ =  1,

respectively. In this case the peaks of unimodality are trivial. When d =  2, we have

C 2’*-vectors (1,2,1), (0,2,2) and (0,0,4) for £ =  0,1,2, respectively. See Figure 4.4. 

We observe a single peak of unimodality at index when 2 +  £ is even, and a
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-M B -1,1]I

c? Co2 c2

{2} ]
►---- A

Ci c\
{2} ”| 

i---- A
{2} ;

i---- A
{1,2} {1,2} {1,2}!

►---- Ar--- ?
0 :ii A

{1}
r--- ?

0 :ii A
{1} [7:1

1

r--- ? *
{i>!

Cf Cf C| Cl Cf cl

Cj’°-vector: (1,2,1) C2,1-vector: (0,2,2) Cj’2-vector: (0,0,4)

Figure 4.4: Decomposition of [—1,1 ]| into unit cells indexed by subsets of {1 ,2 } for 
£ =  0,1,2.

double peak of unimodality at indices [ ^ J  and [ ^ J  +  1 when 2 +  £ is odd.

Let d > 2. Suppose the vectors are unimodal for all £ satisfying 0 < £ <

d — 1 with the desired peak(s) of unimodality. We will proceed by cases on £.

Case 1: £ =  0 .

Let / '  C [d — 1]. In dimension d, Uf;° =  C f where j  =  \[d]\ I'\ =  d — \I'\. In

dimension d— 1, Uf, 1,0 =  Cf_l because \[d — 1] \ I'\ =  d— 1 —|/'| =  j  —1. Therefore, 

when K  C [d] such that d ^ A',

Let 1 =  1' U {//}. In dimension d, Uf’° =  C f where j  ~  \[d] \ 11 =  d — |/|. In

dimension d — 1, the index i =  d does not contribute to the geometry of the unit
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cell so U} ~ 1>0 “  U fr h 0  =  C j~l because

| [ d - l ] \ / | = d - l - ( | J | - l )  =  d - | / | = j

Therefore, when K  C [d] such that d G K,

U f  “  Cf UdK"lfl “  cf~l

It follows that

c f  =  | {/ C [d] : U f  =  Cf}\

=  | { /  C [d] : d i  I  and U }° “  C /}| +  | {/ C [d] : d G I  and U f[) “  6 '/ }  |

=  | { / '  C [d -  1] : t/£~1,0 ^  C f j 1}  | +  | { / '  C [d -  1] : CZ/r1,0 “  C / - 1}  |

-  r d~ l f l  4- r d_1’°-  Cj_x -+- Cj

By symmetry, to prove the unimodality of the Cj'°-vector, it is sufficient to show

holds for all j  <  [|J.
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Let j  < [|J. We note that inequality (4.5) is equivalent to

d—1,0 , d—1,0 <  d—1,0 d—1,0
3 -1  +  j  — 3 +  j + 1

and thus to

c j : ! ’0 <  c t } ’0 • (4.6)

By the induction hypothesis, if d is odd, then the (single) peak of unimodality 

of the vector is which implies cf~1,0 <  cdk ~ \ ’ 0  for all k <  We note

j  <  [ | J  is equivalent to j  +  1 < ^  when d is odd. Therefore, (4.6) holds by the 

induction hypothesis and (4.5) holds for all j  <  [ | J  when d is odd.

If d is even, then the (double) peaks of unimodality of the C- 1,0-vector arej

L ^ J  and +  1 =  L ^ J  — 2' ^ follows that cdk ~ 1 ,0  <  for all k <  or

equivalently, for all k +  l <  |. We still have j  <  [ | J  which is equivalent to j  +1  < | 

when d is even. Therefore, (4.6) holds by the induction hypothesis, implying that 

(4.5) holds for all j  < [ | J  when d is even.

By the symmetry of the C f°-vector we have

d,0 \ d,0
ci -  ci+i

for all j  >  [|J. We conclude that, the C f ' ° -vector is unimodal for d >  1 and 

0 <  j  <  d.
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Remark. Prom Theorem 4.1 we know c f°  =  (j) for all d >  1 and j  e  Z. This gives 

us the C f’°-vector

Common knowledge about the binomial coefficients tells us that this vector is palin

dromic and unimodal and thus alternatingly increasing. Case 1 gives a geometric 

interpretation of this result in addition to a geometric interpretation of the well- 

known recursive formula for binomial coefficients:

By definition, this unit cell is a subset of [—1, Vf( , a half-open ±  1-cube with i  facets 

missing corresponding to the £ supporting hyperplanes x,i =  1, Xd-\ =  1 , . . . ,  Xd+ \-i =  

1.

If we consider this same ±l-cube in one dimension lower, then we observe £ — 1 

missing facets corresponding to supporting hyperplanes Xd-i =  1,. • •, Xd+i-e — 1- 

Therefore, when considered as a (d — 1)-dimensional object, the unit cell indexed by

Case 2: I >  0 .

Let I' C [d — 1]. In dimension d, Uf,’e =  C f where

j  =  \[d\\I'\ +  \ { i e r  : d + l - e < i <  d}\ .
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I' is a subset of [—1, l]^_i and is congruent to C% 1 where

k =  |[d -  1] \ I'\ +  |{z € / ' :  (d -  1) +  1 -  (£ -  1) <  i <  d -  1}|

=  (d — 1) — |JT/1 +  |{z £ I' : d 4-1 — £, ^ i <  d — 1}|

=  \ [d ]\ I'\ -l +  \ { i e T  : d + l ~ £ < i < d } \

=  3 - 1 -

Therefore, when K  C [d] sucli that d £ I\.

jrjdji <̂ __x> jjrd—l,£—l ^

Let I  =  I 1 U {d }. In dimension d, U fe =  C f where

j  =  \[d]\I\ +  \{i€ I  : d + l - £ < i < d } \  .

In dimension d — 1, we consider the unit cell indexed by /  as a subset of [—1,1]^“ * 

just as before. Therefore, Uf,e =  U ff~x =  C fz{ in dimension d — 1 because

j  — 1  =  d — \I\ +  \ {i £ I : d +  1  — £ < i <  d}\ — I

=  \ [d -l]\ r\  +  \ { i e l '  :d  +  l - £ < i < d - l } \  .



78

Therefore, when K  C [d] such that d e  K,

ud/  s  cf <=» udK l/~l “  cfzl ■

It follows that

c f  = | { / C  [d] : U}'e =  C°

=  |{J C [d] : d i  I  and Ud/  *  C / } | + |{  J C [d] : d € /  and Uf* = C‘

/ '  C [d -  1] : C #"1’* "1 S  C /ri}| +  |{7' ^  ^ : ^ " M_1 =  C # } |

Suppose j  <  I I. We wish to show

d,£ ^ d,£ ( a t-r\
c j  <  j + i > (4-7)

or equivalently,

Li - i  -c t y - '  <  < f u - ' . (4.8)

By the induction hypothesis, inequality (4.8) holds for all t  > 0 when j  — 1 < 

L — j . Equivalently, inequality (4.8) holds for all £ > 0 when j  < . How

ever, j . So j  < implies (4.8) which further implies (4.7). Prom
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the symmetry of the C f-vector,

d, t  \  dj .
ci  ^  ci+i

for all j  >  [d+2+£j • Therefore, the C f l-vector is unimodal for d >  1, 0 <  j  <  d and 

£ > 0.

This proves the unimodality of the (7^-vector. □

We are now equipped to prove that the coefficients of S ([—1, l]f,t)  are alternat

ingly increasing.

Proof of Theorem 4-5. Fix d >  1 and £ such that 0 < £ < d. Suppose j  <

We wish to show that

c f  <  . (4.9)

First note j  <  implies j  < d — j.  If j  and d — j  are both less than or

equal to p\ :=  , then inequality (4.9) holds by unimodality of the C ^ -v ector:

c f  < £ for all k <  k' <  pi.

If j  <  pi <  d — j ,  then we need to show that the index d — j  is closer to pi +  1

than the index j  is to p i. That is, we need to show

P i ~ j > ( d ~  j ) -  (pi +  1),
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or equivalently,

2 pi >  d — 1.

Inequality (4.9) will follow from the symmetry of the C j1 -vector.

When d +  £ is even we have

2 px =  2 = d  +  t > d -  1.

When d +  £ is odd we have

2 p\ =  2 ^ ^  =  d +  £ — 1 > d — 1.

Therefore,

2 Pi > d - l

holds for all d > 1 and 0 < £ < d.

We conclude that the number of unit cells congruent to C f in the [//-induced 

decomposition of [—1,1]^ is less than or equal to the number of unit cells congruent 

to Cdd_ .j in the decomposition. Therefore we can pair each of the (A,  ̂ -polynomials 

with j-value strictly less than with one of the (A. d — j )-polynomials such

that no (A ,d — j)-polynomial is paired twice. The sum of each polynomial pair 

is alternatingly increasing. Furthermore, any (A, j)-polynomial not paired in this 

process is itself alternatingly increasing. Thus, for fixed d >  1 and 0 < £ < d, the
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coefficients of

 ̂([- 1 > =  ' A?+i(^ +  M )
i=o

are alternatingly increasing. □

We arrive at the following corollary immediately.

Corollary 4.7. B(+i(d +  1, t) is alternatingly increasing for d >  1 and 0 < £ < d.



82

Chapter 5 

Lattice Centrally Symmetric 

Parallelepipeds

5.1 Parallelepipeds with Lattice Centrally Symmetric Edges

A polytope V  is centrally symmetric about the origin if p G V  implies —p G V. 

A polytope V  is lattice centrally symmetric if there exists v G Z d such that 

v 4- V  is centrally symmetric about the origin. Moreover, we say the half-open 

lattice parallelepiped <)/(./) is lattice centrally symmetric if its closure 0 (J) is.

The ±  1-cube is a simple example of a lattice centrally symmetric parallelepiped. 

We have already seen that the 5-vector for the ±  1-cube (closed and half-open) is 

alternatingly increasing.

Theorem 5.1. Let <)/(vi, . . . ,  v (() be a half-open parallelepiped, with lattice centrally
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symmetric edges. Then

x E A C [ d ] # ( n (w u > - - - >w *|A'|)n Z d ) % u A ' | + i ( d + l , 0  
Ehr(0/ (v i,. . . ,vd),t) =    ( i - t y + i  ---------------------’

where w, =  |vj G Z d for all i G [d].

Proof. Let ^/(vi,..., v<*) be a half-open parallelepiped with lattice centrally sym

metric edges. Then there exists w * G Z d such that w.t =  |vj. In this way we see 

that,

0/(vi,..., vd) = 0/(2w1?..., 2wrf) = 2<>/(w1, . .. ,wrf) .

We also note that [—1,1]$ =  2Cf. This implies

ehr ([— 1,1 ]$, n) = ehr (2Cf,n)

=  ehr (Qrf, 2n)

=  £  <2n)|Ji’
[£]CJC[d]

where the last equality follows from Corollary 3.9. This allows us to express the
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Ehrhart series of <>/(vi,. . . ,  vrf) in terms of the Ehrhart series of half-open ±  1-cubes:

Ehr (♦ / (v j , . . . ,  v^), t)

= E h r ( 2 < > / ( w i , . . . , w  d),t)

=  1 +  Y ,  #  (2 n ^ (w x , . . . ,  w d) n Z d) tn
n>  1

=  E  (2n)|;|# ( n ( w tl, . . . 1w i|J1) n Z ' )  by Lemma 3.8
n >  0 /CJC[d]

=  E r  E  (2n)lJl £ # ( n ( w il, . . . , w l|K|) n Z d)  by Lemma 3.7
n >  0 JCJC[d] K C J

=  # ( DK r - . w i|J(|) n Z d) ^ f  £  (2n)|J|
KC[rf] n>0 I U K C J

=  J 2  #  ( D (w n> • • • > w i|K|) n Z d)  £  ehr ( [ -1 ,  l]f/uA1, n) tn
KC[d] n>  0

=  #  ( D (w n , . . . , w i|/f|) n Z d)  Ehr ( [—1, llf/ujs'hO
irc[d]

_  Eft'ctd] #  ( ° ( w u , .  • •, w i|Jf|) n Zd)  5|/uft1+1(d +  1, t)

=  (1 -  i)d+l ’

where the last equality follows from Theorem 4.4. □

C orollary 5.2. The 5-polynomial of a half-open parallelepiped with lattice centrally 

symmetric edges has alternatingly increasing coefficients.
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Proof. From Theorem 5.1 we have

^(♦ /(vi #  ( □ ( w il, . . . ,W j|K|) n Z d)  B lIuK\+1( d + l , t ) ,
KC[d\

where <)/(v!,. . . ,  v d) is a half-open parallelepiped with lattice centrally symmetric 

edges and w, =  -v , e  Z d. Furthermore, #  ^□(w,1, . . . ,  w.i|K|) D Z A  >  0 for all K  C 

[d]. By Corollary 4.7, the coefficients of B\ruK\+i(d + l,t)  are alternatingly increasing. 

The same is true for the coefficients of any nonnegative linear combination of the 

B\iuK\+i(d+ 1, t) where K  C [d], □

C orollary 5.3. The 5-polynomial of a zonotope with lattice centrally symmetric 

edges has alternatingly increasing coefficients.

Proof. Let Z  (u i , . . . .  ur ) be a ('/-dimensional zonotope with lattice centrally sym

metric edges. Then there exists w, e  Z d such that w ( — \\\i for all i e  [r] and

Z (  U i, . . . ,U r )  =  Z  (2wj , . . . ,  2wr) .

Let %' be a subdivision of Z  into parallelepipeds whose maximal cells Oi, C*2» • • •, Os 

are generated by the linearly independent subsets of { 2 w i , . . . ,  2wr}. The existence 

of such a subdivision exists by Theorem 2.1. By Corollary 3.13, subdivision %’ gives 

rise to a disjoint decomposition of Z  into half-open parallelepipeds of the <)-tvpe. In 

particular, the half-open parallelepipeds of the decomposition are half-open variants
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of the maximal cells in c&. Thus we have

2 =  [_!♦(
i6[r]

and

i€[r]

where 0, is the appropriate half-open variant of 0» in

For all i G [r], the edges of 0; are lattice centrally symmetric. Therefore, by 

Corollary 5.2 the coefficients of S are alternatingly increasing for all i G [r]

and so are the coefficients of S (Z, t). □

5.2 Extensions and Open Questions

We have shown that the coefficients of the ^-polynomial for the following families 

of lattice polytopes are alternatingly increasing:

• Half-open lattice d-parallelepipeds with j  >  [ ^ J  non-translate facets re

moved;

• Half-open lattice parallelepipeds with lattice centrally symmetric edges;

• Closed lattice zonotopes with lattice centrally symmetric edges.
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We are interested in what more we can say about the inequality relations on 

the coefficients of the ^-polynomial for the following more general families of lattice 

polytopes:

• Half-open lattice centrally symmetric lattice parallelepipeds;

• Half-open lattice parallelepipeds with an interior lattice point;

• Lattice centrally symmetric lattice zonotopes;

• Lattice zonotopes with an interior lattice point;

• Half-open lattice zonotopes (i.e., lattice zonotopes with non-translate facets 

removed).

A further extension of our work which remains open is whether we can define 

appropriate bivariate permutation statistics which generalize the (A,j)~  and (B,£)~ 

Eulerian numbers parallel to Brenti’s g-Eulerian numbers in [4]. In particular, can we 

define bivariate statistics and polynomials which will further generalize the classical 

theory of Eulerian numbers and polynomials?

87
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